Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=(x^2)/(y(1+x^2))
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Reagrupa los factores.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Reordena y .
Paso 2.3.2
Divide por .
Toca para ver más pasos...
Paso 2.3.2.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
++++
Paso 2.3.2.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
++++
Paso 2.3.2.3
Multiplica el nuevo término del cociente por el divisor.
++++
+++
Paso 2.3.2.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
++++
---
Paso 2.3.2.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
++++
---
-
Paso 2.3.2.6
La respuesta final es el cociente más el resto sobre el divisor.
Paso 2.3.3
Divide la única integral en varias integrales.
Paso 2.3.4
Aplica la regla de la constante.
Paso 2.3.5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.3.6.1
Reordena y .
Paso 2.3.6.2
Reescribe como .
Paso 2.3.7
La integral de con respecto a es .
Paso 2.3.8
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.2.1.1
Aplica la propiedad distributiva.
Paso 3.2.2.1.2
Multiplica por .
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4
Factoriza de .
Toca para ver más pasos...
Paso 3.4.1
Factoriza de .
Paso 3.4.2
Factoriza de .
Paso 3.4.3
Factoriza de .
Paso 3.4.4
Factoriza de .
Paso 3.4.5
Factoriza de .
Paso 3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.