Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Reagrupa los factores.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Simplifica.
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Cancela el factor común de .
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.3.3
Cancela el factor común de .
Paso 1.3.3.1
Cancela el factor común.
Paso 1.3.3.2
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.2.1.1
Deja . Obtén .
Paso 2.2.1.1.1
Diferencia .
Paso 2.2.1.1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.1.1.3
Diferencia.
Paso 2.2.1.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.3.4
Simplifica la expresión.
Paso 2.2.1.1.3.4.1
Suma y .
Paso 2.2.1.1.3.4.2
Multiplica por .
Paso 2.2.1.1.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.1.1.3.6
Simplifica mediante la adición de términos.
Paso 2.2.1.1.3.6.1
Multiplica por .
Paso 2.2.1.1.3.6.2
Suma y .
Paso 2.2.1.2
Reescribe el problema mediante y .
Paso 2.2.2
Simplifica.
Paso 2.2.2.1
Multiplica por .
Paso 2.2.2.2
Mueve a la izquierda de .
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
La integral de con respecto a es .
Paso 2.2.5
Simplifica.
Paso 2.2.6
Reemplaza todos los casos de con .
Paso 2.3
La integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .