Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=(y(x+1))/(2x)
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Reagrupa los factores.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.3.1
Cancela el factor común.
Paso 1.3.3.2
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
La integral de con respecto a es .
Paso 2.2.3
Simplifica.
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Divide la fracción en varias fracciones.
Paso 2.3.2
Divide la única integral en varias integrales.
Paso 2.3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.3.1
Cancela el factor común.
Paso 2.3.3.2
Reescribe la expresión.
Paso 2.3.4
Aplica la regla de la constante.
Paso 2.3.5
La integral de con respecto a es .
Paso 2.3.6
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1.1
Simplifica al mover dentro del algoritmo.
Paso 3.2.1.1.2
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 3.2.1.2
Usa la propiedad del cociente de los logaritmos, .
Paso 3.3
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.4
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.5
Resuelve
Toca para ver más pasos...
Paso 3.5.1
Reescribe la ecuación como .
Paso 3.5.2
Multiplica ambos lados por .
Paso 3.5.3
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.5.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.5.3.1.1
Cancela el factor común.
Paso 3.5.3.1.2
Reescribe la expresión.
Paso 3.5.4
Resuelve
Toca para ver más pasos...
Paso 3.5.4.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.5.4.2
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.5.4.2.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.4.2.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.4.2.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Agrupa los términos de la constante.
Toca para ver más pasos...
Paso 4.1
Reescribe como .
Paso 4.2
Reordena y .
Paso 4.3
Reescribe como .
Paso 4.4
Reordena y .