Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=(2xy)/((x^2-2)(y^2+3))
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Reagrupa los factores.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.3.1
Factoriza de .
Paso 1.3.3.2
Cancela el factor común.
Paso 1.3.3.3
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Divide la fracción en varias fracciones.
Paso 2.2.2
Divide la única integral en varias integrales.
Paso 2.2.3
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.2.3.1
Factoriza de .
Paso 2.2.3.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.2.3.2.1
Eleva a la potencia de .
Paso 2.2.3.2.2
Factoriza de .
Paso 2.2.3.2.3
Cancela el factor común.
Paso 2.2.3.2.4
Reescribe la expresión.
Paso 2.2.3.2.5
Divide por .
Paso 2.2.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.6
La integral de con respecto a es .
Paso 2.2.7
Simplifica.
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.3.2.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.3.2.1.1
Diferencia .
Paso 2.3.2.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.2.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.2.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2.1.5
Suma y .
Paso 2.3.2.2
Reescribe el problema mediante y .
Paso 2.3.3
Simplifica.
Toca para ver más pasos...
Paso 2.3.3.1
Multiplica por .
Paso 2.3.3.2
Mueve a la izquierda de .
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Simplifica.
Toca para ver más pasos...
Paso 2.3.5.1
Combina y .
Paso 2.3.5.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.5.2.1
Cancela el factor común.
Paso 2.3.5.2.2
Reescribe la expresión.
Paso 2.3.5.3
Multiplica por .
Paso 2.3.6
La integral de con respecto a es .
Paso 2.3.7
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .