Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=2(1+y^2)x
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Simplifica.
Toca para ver más pasos...
Paso 1.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.2.2
Combina y .
Paso 1.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.3.1
Factoriza de .
Paso 1.2.3.2
Cancela el factor común.
Paso 1.2.3.3
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Reescribe como .
Paso 2.2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.3.3.1
Reescribe como .
Paso 2.3.3.2
Simplifica.
Toca para ver más pasos...
Paso 2.3.3.2.1
Combina y .
Paso 2.3.3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.3.2.2.1
Cancela el factor común.
Paso 2.3.3.2.2.2
Reescribe la expresión.
Paso 2.3.3.2.3
Multiplica por .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Calcula la inversa de la arcotangente de ambos lados de la ecuación para extraer del interior de la arcotangente.