Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Reescribe.
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Evalúa .
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.3
Multiplica por .
Paso 2.5
Reordena los términos.
Paso 3
Paso 3.1
Diferencia con respecto a .
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Evalúa .
Paso 3.3.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.3.2
La derivada de con respecto a es .
Paso 3.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.4
Multiplica por .
Paso 3.4
Diferencia con la regla de la constante.
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Suma y .
Paso 4
Paso 4.1
Sustituye por y para .
Paso 4.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 5
Establece igual a la integral de .
Paso 6
Paso 6.1
Aplica la regla de la constante.
Paso 7
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 8
Establece .
Paso 9
Paso 9.1
Diferencia con respecto a .
Paso 9.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 9.3
Evalúa .
Paso 9.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 9.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 9.3.3
Diferencia con la regla del producto, que establece que es donde y .
Paso 9.3.4
La derivada de con respecto a es .
Paso 9.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 9.3.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 9.3.7
Multiplica por .
Paso 9.3.8
Suma y .
Paso 9.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 9.5
Simplifica.
Paso 9.5.1
Aplica la propiedad distributiva.
Paso 9.5.2
Reordena los términos.
Paso 10
Paso 10.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 10.1.1
Resta de ambos lados de la ecuación.
Paso 10.1.2
Resta de ambos lados de la ecuación.
Paso 10.1.3
Combina los términos opuestos en .
Paso 10.1.3.1
Resta de .
Paso 10.1.3.2
Suma y .
Paso 10.1.3.3
Resta de .
Paso 11
Paso 11.1
Integra ambos lados de .
Paso 11.2
Evalúa .
Paso 11.3
La integral de con respecto a es .
Paso 11.4
Suma y .
Paso 12
Sustituye por en .
Paso 13
Paso 13.1
Simplifica cada término.
Paso 13.1.1
Aplica la propiedad distributiva.
Paso 13.1.2
Multiplica por .
Paso 13.2
Reordena los factores en .