Cálculo Ejemplos

Resuelve la Ecuación Diferencial x(y-3)(dy)/(dx)=4y
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.1
Divide cada término en por .
Paso 1.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.1.1
Cancela el factor común.
Paso 1.1.2.1.2
Reescribe la expresión.
Paso 1.1.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.2.1
Cancela el factor común.
Paso 1.1.2.2.2
Divide por .
Paso 1.2
Reagrupa los factores.
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Multiplica por .
Paso 1.4.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.2.1
Factoriza de .
Paso 1.4.2.2
Cancela el factor común.
Paso 1.4.2.3
Reescribe la expresión.
Paso 1.4.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.3.1
Cancela el factor común.
Paso 1.4.3.2
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Divide por .
Toca para ver más pasos...
Paso 2.2.2.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
+-
Paso 2.2.2.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+-
Paso 2.2.2.3
Multiplica el nuevo término del cociente por el divisor.
+-
++
Paso 2.2.2.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+-
--
Paso 2.2.2.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+-
--
-
Paso 2.2.2.6
La respuesta final es el cociente más el resto sobre el divisor.
Paso 2.2.3
Divide la única integral en varias integrales.
Paso 2.2.4
Aplica la regla de la constante.
Paso 2.2.5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.7
Multiplica por .
Paso 2.2.8
La integral de con respecto a es .
Paso 2.2.9
Simplifica.
Paso 2.3
La integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .