Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Divide cada término en por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Divide por .
Paso 1.3
Cancela el factor común de y .
Paso 1.3.1
Factoriza de .
Paso 1.3.2
Cancela los factores comunes.
Paso 1.3.2.1
Eleva a la potencia de .
Paso 1.3.2.2
Factoriza de .
Paso 1.3.2.3
Cancela el factor común.
Paso 1.3.2.4
Reescribe la expresión.
Paso 1.3.2.5
Divide por .
Paso 2
Paso 2.1
Establece la integración.
Paso 2.2
Integra .
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Simplifica la respuesta.
Paso 2.2.3.1
Reescribe como .
Paso 2.2.3.2
Simplifica.
Paso 2.2.3.2.1
Combina y .
Paso 2.2.3.2.2
Cancela el factor común de y .
Paso 2.2.3.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2
Cancela los factores comunes.
Paso 2.2.3.2.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2.2
Cancela el factor común.
Paso 2.2.3.2.2.2.3
Reescribe la expresión.
Paso 2.2.3.2.2.2.4
Divide por .
Paso 2.3
Elimina la constante de integración.
Paso 3
Paso 3.1
Multiplica cada término por .
Paso 3.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3
Multiplica .
Paso 3.3.1
Combina y .
Paso 3.3.2
Multiplica por sumando los exponentes.
Paso 3.3.2.1
Usa la regla de la potencia para combinar exponentes.
Paso 3.3.2.2
Suma y .
Paso 3.3.3
Simplifica .
Paso 3.4
Reordena los factores en .
Paso 4
Reescribe el lado izquierdo como resultado de la diferenciación de un producto.
Paso 5
Establece una integral en cada lado.
Paso 6
Integra el lado izquierdo.
Paso 7
La integral de con respecto a es .
Paso 8
Paso 8.1
Divide cada término en por .
Paso 8.2
Simplifica el lado izquierdo.
Paso 8.2.1
Cancela el factor común de .
Paso 8.2.1.1
Cancela el factor común.
Paso 8.2.1.2
Divide por .