Ingresa un problema...
Cálculo Ejemplos
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Paso 3.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2
Combina y .
Paso 3.3
Cancela el factor común de .
Paso 3.3.1
Factoriza de .
Paso 3.3.2
Cancela el factor común.
Paso 3.3.3
Reescribe la expresión.
Paso 3.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.5
Cancela el factor común de .
Paso 3.5.1
Mueve el signo menos inicial en al numerador.
Paso 3.5.2
Factoriza de .
Paso 3.5.3
Cancela el factor común.
Paso 3.5.4
Reescribe la expresión.
Paso 3.6
Mueve el negativo al frente de la fracción.
Paso 4
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Integra el lado izquierdo.
Paso 4.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.2.2
La integral de con respecto a es .
Paso 4.2.3
Simplifica.
Paso 4.3
Integra el lado derecho.
Paso 4.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.2
La integral de con respecto a es .
Paso 4.3.3
Simplifica.
Paso 4.4
Agrupa la constante de integración en el lado derecho como .
Paso 5
Paso 5.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 5.2
Simplifica el lado izquierdo.
Paso 5.2.1
Simplifica .
Paso 5.2.1.1
Simplifica al mover dentro del algoritmo.
Paso 5.2.1.2
Usa las propiedades de los logaritmos del producto, .
Paso 5.3
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 5.4
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 5.5
Resuelve
Paso 5.5.1
Reescribe la ecuación como .
Paso 5.5.2
Divide cada término en por y simplifica.
Paso 5.5.2.1
Divide cada término en por .
Paso 5.5.2.2
Simplifica el lado izquierdo.
Paso 5.5.2.2.1
Cancela el factor común de .
Paso 5.5.2.2.1.1
Cancela el factor común.
Paso 5.5.2.2.1.2
Divide por .
Paso 5.5.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.5.4
Simplifica .
Paso 5.5.4.1
Reescribe como .
Paso 5.5.4.2
Multiplica por .
Paso 5.5.4.3
Combina y simplifica el denominador.
Paso 5.5.4.3.1
Multiplica por .
Paso 5.5.4.3.2
Eleva a la potencia de .
Paso 5.5.4.3.3
Usa la regla de la potencia para combinar exponentes.
Paso 5.5.4.3.4
Suma y .
Paso 5.5.4.3.5
Reescribe como .
Paso 5.5.4.3.5.1
Usa para reescribir como .
Paso 5.5.4.3.5.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.5.4.3.5.3
Combina y .
Paso 5.5.4.3.5.4
Cancela el factor común de .
Paso 5.5.4.3.5.4.1
Cancela el factor común.
Paso 5.5.4.3.5.4.2
Reescribe la expresión.
Paso 5.5.4.3.5.5
Simplifica.
Paso 5.5.4.4
Reescribe como .
Paso 5.5.4.5
Combina con la regla del producto para radicales.
Paso 5.5.4.6
Reordena los factores en .
Paso 5.5.5
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 5.5.6
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 6
Simplifica la constante de integración.