Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3
Paso 3.1
Diferencia con respecto a .
Paso 3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.4
Diferencia.
Paso 3.4.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.4.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.3
Suma y .
Paso 3.4.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.6
Multiplica por .
Paso 3.4.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.8
Simplifica mediante la adición de términos.
Paso 3.4.8.1
Multiplica por .
Paso 3.4.8.2
Suma y .
Paso 3.5
Simplifica.
Paso 3.5.1
Aplica la propiedad distributiva.
Paso 3.5.2
Combina los términos.
Paso 3.5.2.1
Multiplica por .
Paso 3.5.2.2
Multiplica por .
Paso 3.5.3
Reordena los términos.
Paso 4
Paso 4.1
Sustituye por y para .
Paso 4.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 5
Paso 5.1
Sustituye por .
Paso 5.2
Sustituye por .
Paso 5.3
Sustituye por .
Paso 5.3.1
Sustituye por .
Paso 5.3.2
Simplifica el numerador.
Paso 5.3.2.1
Aplica la propiedad distributiva.
Paso 5.3.2.2
Multiplica por .
Paso 5.3.2.3
Multiplica por .
Paso 5.3.2.4
Suma y .
Paso 5.3.2.5
Factoriza de .
Paso 5.3.2.5.1
Factoriza de .
Paso 5.3.2.5.2
Factoriza de .
Paso 5.3.2.5.3
Factoriza de .
Paso 5.3.3
Cancela el factor común de y .
Paso 5.3.3.1
Reordena los términos.
Paso 5.3.3.2
Cancela el factor común.
Paso 5.3.3.3
Reescribe la expresión.
Paso 5.3.4
Mueve el negativo al frente de la fracción.
Paso 5.4
Obtén el factor integrador .
Paso 6
Paso 6.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6.3
Multiplica por .
Paso 6.4
La integral de con respecto a es .
Paso 6.5
Simplifica.
Paso 6.6
Simplifica cada término.
Paso 6.6.1
Simplifica al mover dentro del algoritmo.
Paso 6.6.2
Potencia y logaritmo son funciones inversas.
Paso 6.6.3
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 6.6.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 7
Paso 7.1
Multiplica por .
Paso 7.2
Combina y .
Paso 7.3
Multiplica por .
Paso 7.4
Cancela el factor común de .
Paso 7.4.1
Factoriza de .
Paso 7.4.2
Factoriza de .
Paso 7.4.3
Cancela el factor común.
Paso 7.4.4
Reescribe la expresión.
Paso 7.5
Aplica la propiedad distributiva.
Paso 7.6
Multiplica por .
Paso 7.7
Reescribe como .
Paso 7.8
Multiplica por .
Paso 7.9
Reescribe como .
Paso 7.10
Factoriza de .
Paso 7.11
Factoriza de .
Paso 7.12
Mueve el negativo al frente de la fracción.
Paso 8
Establece igual a la integral de .
Paso 9
Paso 9.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 9.3
Multiplica los exponentes en .
Paso 9.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 9.3.2
Multiplica por .
Paso 9.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 9.5
Simplifica la respuesta.
Paso 9.5.1
Reescribe como .
Paso 9.5.2
Combina y .
Paso 10
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 11
Establece .
Paso 12
Paso 12.1
Diferencia con respecto a .
Paso 12.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 12.3
Evalúa .
Paso 12.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 12.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 12.3.3
Multiplica por .
Paso 12.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 12.5
Reordena los términos.
Paso 13
Paso 13.1
Resuelve
Paso 13.1.1
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Paso 13.1.1.1
Suma a ambos lados de la ecuación.
Paso 13.1.1.2
Combina los numeradores sobre el denominador común.
Paso 13.1.1.3
Suma y .
Paso 13.1.1.4
Suma y .
Paso 13.1.1.5
Cancela el factor común de .
Paso 13.1.1.5.1
Cancela el factor común.
Paso 13.1.1.5.2
Divide por .
Paso 13.1.2
Resta de ambos lados de la ecuación.
Paso 14
Paso 14.1
Integra ambos lados de .
Paso 14.2
Evalúa .
Paso 14.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 14.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 14.5
Reescribe como .
Paso 15
Sustituye por en .
Paso 16
Combina y .