Cálculo Ejemplos

Resuelve la Ecuación Diferencial 2(dy)/(dt)-y=4sin(3t)
Paso 1
Reescribe la ecuación diferencial como .
Toca para ver más pasos...
Paso 1.1
Divide cada término en por .
Paso 1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Divide por .
Paso 1.3
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.3.1
Factoriza de .
Paso 1.3.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.3.2.4
Divide por .
Paso 1.4
Reordena los términos.
Paso 2
El factor integrador se define mediante la fórmula , donde .
Toca para ver más pasos...
Paso 2.1
Establece la integración.
Paso 2.2
Integra .
Toca para ver más pasos...
Paso 2.2.1
Mueve el negativo al frente de la fracción.
Paso 2.2.2
Aplica la regla de la constante.
Paso 2.3
Elimina la constante de integración.
Paso 2.4
Combina y .
Paso 3
Multiplica cada término por el factor integrador .
Toca para ver más pasos...
Paso 3.1
Multiplica cada término por .
Paso 3.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.2
Mueve el negativo al frente de la fracción.
Paso 3.2.3
Combina y .
Paso 3.2.4
Combina y .
Paso 3.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4
Reescribe el lado izquierdo como resultado de la diferenciación de un producto.
Paso 5
Establece una integral en cada lado.
Paso 6
Integra el lado izquierdo.
Paso 7
Integra el lado derecho.
Toca para ver más pasos...
Paso 7.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7.2
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 7.2.1
Deja . Obtén .
Toca para ver más pasos...
Paso 7.2.1.1
Diferencia .
Paso 7.2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.2.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.2.1.4
Multiplica por .
Paso 7.2.2
Reescribe el problema mediante y .
Paso 7.3
Simplifica.
Toca para ver más pasos...
Paso 7.3.1
Multiplica por .
Paso 7.3.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 7.3.3
Multiplica por la recíproca de la fracción para dividir por .
Paso 7.3.4
Multiplica por .
Paso 7.3.5
Multiplica por .
Paso 7.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7.5
Simplifica la expresión.
Toca para ver más pasos...
Paso 7.5.1
Multiplica por .
Paso 7.5.2
Reordena y .
Paso 7.6
Integra por partes mediante la fórmula , donde y .
Paso 7.7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7.8
Simplifica la expresión.
Toca para ver más pasos...
Paso 7.8.1
Multiplica por .
Paso 7.8.2
Reordena y .
Paso 7.9
Integra por partes mediante la fórmula , donde y .
Paso 7.10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7.11
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 7.11.1
Multiplica por .
Paso 7.11.2
Aplica la propiedad distributiva.
Paso 7.11.3
Multiplica por .
Paso 7.12
Al resolver , obtenemos que = .
Paso 7.13
Reescribe como .
Paso 7.14
Simplifica.
Toca para ver más pasos...
Paso 7.14.1
Combina y .
Paso 7.14.2
Mueve el negativo al frente de la fracción.
Paso 7.15
Reemplaza todos los casos de con .
Paso 7.16
Simplifica.
Toca para ver más pasos...
Paso 7.16.1
Multiplica por .
Paso 7.16.2
Combina y .
Paso 7.16.3
Multiplica por .
Paso 7.16.4
Combina y .
Paso 7.17
Simplifica.
Toca para ver más pasos...
Paso 7.17.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 7.17.1.1
Factoriza de .
Paso 7.17.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 7.17.1.2.1
Factoriza de .
Paso 7.17.1.2.2
Cancela el factor común.
Paso 7.17.1.2.3
Reescribe la expresión.
Paso 7.17.1.2.4
Divide por .
Paso 7.17.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 7.17.2.1
Factoriza de .
Paso 7.17.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 7.17.2.2.1
Factoriza de .
Paso 7.17.2.2.2
Cancela el factor común.
Paso 7.17.2.2.3
Reescribe la expresión.
Paso 7.17.2.2.4
Divide por .
Paso 8
Resuelve
Toca para ver más pasos...
Paso 8.1
Simplifica.
Toca para ver más pasos...
Paso 8.1.1
Combina y .
Paso 8.1.2
Combina y .
Paso 8.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 8.2.1
Divide cada término en por .
Paso 8.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 8.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.2.2.1.1
Cancela el factor común.
Paso 8.2.2.1.2
Divide por .
Paso 8.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 8.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 8.2.3.1.1
Mueve a la izquierda de .
Paso 8.2.3.1.2
Factoriza de .
Paso 8.2.3.1.3
Combinar.
Paso 8.2.3.1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.2.3.1.4.1
Cancela el factor común.
Paso 8.2.3.1.4.2
Reescribe la expresión.
Paso 8.2.3.1.5
Multiplica por .
Paso 8.2.3.1.6
Mueve el negativo al frente de la fracción.