Cálculo Ejemplos

Resuelve la Ecuación Diferencial a^2dx=x raíz cuadrada de x^2a^2dy
Paso 1
Reescribe la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.1.1
Cancela el factor común.
Paso 3.1.2
Reescribe la expresión.
Paso 3.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 3.2.1
Reescribe como .
Paso 3.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.2.3
Combina exponentes.
Toca para ver más pasos...
Paso 3.2.3.1
Eleva a la potencia de .
Paso 3.2.3.2
Eleva a la potencia de .
Paso 3.2.3.3
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.3.4
Suma y .
Paso 3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1
Factoriza de .
Paso 3.3.2
Factoriza de .
Paso 3.3.3
Cancela el factor común.
Paso 3.3.4
Reescribe la expresión.
Paso 3.4
Combina y .
Paso 4
Integra ambos lados.
Toca para ver más pasos...
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Aplica la regla de la constante.
Paso 4.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.2
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 4.3.2.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 4.3.2.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.3.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.3.2.2.2
Multiplica por .
Paso 4.3.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 4.3.4
Simplifica la respuesta.
Toca para ver más pasos...
Paso 4.3.4.1
Reescribe como .
Paso 4.3.4.2
Combina y .
Paso 4.4
Agrupa la constante de integración en el lado derecho como .