Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resuelve
Paso 1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.2
Divide cada término en por y simplifica.
Paso 1.1.2.1
Divide cada término en por .
Paso 1.1.2.2
Simplifica el lado izquierdo.
Paso 1.1.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.1.2.2.2
Cancela el factor común de .
Paso 1.1.2.2.2.1
Cancela el factor común.
Paso 1.1.2.2.2.2
Divide por .
Paso 1.1.2.3
Simplifica el lado derecho.
Paso 1.1.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Cancela el factor común de .
Paso 1.3.1
Cancela el factor común.
Paso 1.3.2
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
La integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.2
Usa la propiedad del cociente de los logaritmos, .
Paso 3.3
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.4
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.5
Resuelve
Paso 3.5.1
Reescribe la ecuación como .
Paso 3.5.2
Multiplica ambos lados por .
Paso 3.5.3
Simplifica el lado izquierdo.
Paso 3.5.3.1
Cancela el factor común de .
Paso 3.5.3.1.1
Cancela el factor común.
Paso 3.5.3.1.2
Reescribe la expresión.
Paso 3.5.4
Resuelve
Paso 3.5.4.1
Reordena los factores en .
Paso 3.5.4.2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 4
Paso 4.1
Simplifica la constante de integración.
Paso 4.2
Combina constantes con el signo más o menos.