Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Diferencia con la regla de la potencia.
Paso 1.4.1
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Reordena los términos.
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.5
Suma y .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 4
Paso 4.1
Sustituye por .
Paso 4.2
Sustituye por .
Paso 4.3
Sustituye por .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica el numerador.
Paso 4.3.2.1
Resta de .
Paso 4.3.2.2
Suma y .
Paso 4.3.3
Cancela el factor común de .
Paso 4.3.3.1
Cancela el factor común.
Paso 4.3.3.2
Reescribe la expresión.
Paso 4.4
Obtén el factor integrador .
Paso 5
Paso 5.1
Aplica la regla de la constante.
Paso 5.2
Simplifica.
Paso 6
Paso 6.1
Multiplica por .
Paso 6.2
Aplica la propiedad distributiva.
Paso 6.3
Multiplica por .
Paso 6.4
Aplica la propiedad distributiva.
Paso 7
Establece igual a la integral de .
Paso 8
Paso 8.1
Divide la única integral en varias integrales.
Paso 8.2
Aplica la regla de la constante.
Paso 8.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 8.5
Simplifica.
Paso 8.6
Simplifica.
Paso 8.6.1
Combina y .
Paso 8.6.2
Cancela el factor común de .
Paso 8.6.2.1
Cancela el factor común.
Paso 8.6.2.2
Reescribe la expresión.
Paso 8.6.3
Multiplica por .
Paso 9
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 10
Establece .
Paso 11
Paso 11.1
Diferencia con respecto a .
Paso 11.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.3
Evalúa .
Paso 11.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 11.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 11.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.5
Multiplica por .
Paso 11.4
Evalúa .
Paso 11.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.4.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 11.5
Diferencia con la regla de la función que establece que la derivada de es .
Paso 11.6
Simplifica.
Paso 11.6.1
Aplica la propiedad distributiva.
Paso 11.6.2
Reordena los términos.
Paso 11.6.3
Reordena los factores en .
Paso 12
Paso 12.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 12.1.1
Resta de ambos lados de la ecuación.
Paso 12.1.2
Resta de ambos lados de la ecuación.
Paso 12.1.3
Resta de ambos lados de la ecuación.
Paso 12.1.4
Combina los términos opuestos en .
Paso 12.1.4.1
Resta de .
Paso 12.1.4.2
Suma y .
Paso 12.1.4.3
Resta de .
Paso 12.1.4.4
Suma y .
Paso 12.1.4.5
Resta de .
Paso 13
Paso 13.1
Integra ambos lados de .
Paso 13.2
Evalúa .
Paso 13.3
La integral de con respecto a es .
Paso 13.4
Suma y .
Paso 14
Sustituye por en .
Paso 15
Reordena los factores en .