Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)-y=e^x
Paso 1
El factor integrador se define mediante la fórmula , donde .
Toca para ver más pasos...
Paso 1.1
Establece la integración.
Paso 1.2
Aplica la regla de la constante.
Paso 1.3
Elimina la constante de integración.
Paso 2
Multiplica cada término por el factor integrador .
Toca para ver más pasos...
Paso 2.1
Multiplica cada término por .
Paso 2.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 2.3
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 2.3.1
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.2
Suma y .
Paso 2.4
Simplifica .
Paso 2.5
Reordena los factores en .
Paso 3
Reescribe el lado izquierdo como resultado de la diferenciación de un producto.
Paso 4
Establece una integral en cada lado.
Paso 5
Integra el lado izquierdo.
Paso 6
Aplica la regla de la constante.
Paso 7
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 7.1
Divide cada término en por .
Paso 7.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 7.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 7.2.1.1
Cancela el factor común.
Paso 7.2.1.2
Divide por .