Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Factoriza.
Paso 1.1.1
Aplica la regla del producto a .
Paso 1.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.3
Combina y .
Paso 1.1.4
Combina los numeradores sobre el denominador común.
Paso 1.1.5
Factoriza de .
Paso 1.1.5.1
Factoriza de .
Paso 1.1.5.2
Factoriza de .
Paso 1.1.5.3
Factoriza de .
Paso 1.2
Reagrupa los factores.
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Paso 1.4.1
Aplica la propiedad distributiva.
Paso 1.4.2
Combina y .
Paso 1.4.3
Cancela el factor común de .
Paso 1.4.3.1
Cancela el factor común.
Paso 1.4.3.2
Reescribe la expresión.
Paso 1.4.4
Multiplica por .
Paso 1.4.5
Simplifica el numerador.
Paso 1.4.5.1
Factoriza de .
Paso 1.4.5.1.1
Factoriza de .
Paso 1.4.5.1.2
Multiplica por .
Paso 1.4.5.1.3
Factoriza de .
Paso 1.4.5.2
Escribe como una fracción con un denominador común.
Paso 1.4.5.3
Combina los numeradores sobre el denominador común.
Paso 1.4.5.4
Combina exponentes.
Paso 1.4.5.4.1
Combina y .
Paso 1.4.5.4.2
Combina y .
Paso 1.4.5.5
Elimina los paréntesis innecesarios.
Paso 1.4.5.6
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 1.4.5.6.1
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 1.4.5.6.1.1
Cancela el factor común.
Paso 1.4.5.6.1.2
Reescribe la expresión.
Paso 1.4.5.6.2
Divide por .
Paso 1.4.6
Cancela el factor común de .
Paso 1.4.6.1
Cancela el factor común.
Paso 1.4.6.2
Divide por .
Paso 1.5
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Aplica reglas básicas de exponentes.
Paso 2.2.2.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.2.2.2
Multiplica los exponentes en .
Paso 2.2.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.2.2.2
Multiplica por .
Paso 2.2.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.4
Simplifica la respuesta.
Paso 2.2.4.1
Reescribe como .
Paso 2.2.4.2
Simplifica.
Paso 2.2.4.2.1
Multiplica por .
Paso 2.2.4.2.2
Combina y .
Paso 2.2.4.2.3
Mueve el negativo al frente de la fracción.
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Aplica la regla de la constante.
Paso 2.3.4
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Combina y .
Paso 3.2
Obtén el mcd de los términos en la ecuación.
Paso 3.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 3.2.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 3.2.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 3.2.4
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 3.2.5
Como no tiene factores además de y .
es un número primo
Paso 3.2.6
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 3.2.7
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 3.2.8
El factor para es en sí mismo.
ocurre vez.
Paso 3.2.9
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 3.2.10
El MCM para es la parte numérica multiplicada por la parte variable.
Paso 3.3
Multiplica cada término en por para eliminar las fracciones.
Paso 3.3.1
Multiplica cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.3.2.1.2
Factoriza de .
Paso 3.3.2.1.3
Cancela el factor común.
Paso 3.3.2.1.4
Reescribe la expresión.
Paso 3.3.2.2
Multiplica por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Simplifica cada término.
Paso 3.3.3.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.3.1.2
Cancela el factor común de .
Paso 3.3.3.1.2.1
Cancela el factor común.
Paso 3.3.3.1.2.2
Reescribe la expresión.
Paso 3.3.3.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.3.1.4
Multiplica por .
Paso 3.3.3.1.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.4
Resuelve la ecuación.
Paso 3.4.1
Reescribe la ecuación como .
Paso 3.4.2
Factoriza de .
Paso 3.4.2.1
Factoriza de .
Paso 3.4.2.2
Factoriza de .
Paso 3.4.2.3
Factoriza de .
Paso 3.4.2.4
Factoriza de .
Paso 3.4.2.5
Factoriza de .
Paso 3.4.3
Divide cada término en por y simplifica.
Paso 3.4.3.1
Divide cada término en por .
Paso 3.4.3.2
Simplifica el lado izquierdo.
Paso 3.4.3.2.1
Cancela el factor común de .
Paso 3.4.3.2.1.1
Cancela el factor común.
Paso 3.4.3.2.1.2
Divide por .
Paso 3.4.3.3
Simplifica el lado derecho.
Paso 3.4.3.3.1
Mueve el negativo al frente de la fracción.
Paso 4
Simplifica la constante de integración.