Cálculo Ejemplos

Resuelve la Ecuación Diferencial (5-x)e^ydx=x(yd)y
Paso 1
Reescribe la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.1.1
Factoriza de .
Paso 3.1.2
Factoriza de .
Paso 3.1.3
Cancela el factor común.
Paso 3.1.4
Reescribe la expresión.
Paso 3.2
Combina y .
Paso 3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1
Factoriza de .
Paso 3.3.2
Factoriza de .
Paso 3.3.3
Cancela el factor común.
Paso 3.3.4
Reescribe la expresión.
Paso 3.4
Multiplica por .
Paso 4
Integra ambos lados.
Toca para ver más pasos...
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.2.1.1
Niega el exponente de y quítalo del denominador.
Paso 4.2.1.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.2.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.1.2.2
Mueve a la izquierda de .
Paso 4.2.1.2.3
Reescribe como .
Paso 4.2.2
Integra por partes mediante la fórmula , donde y .
Paso 4.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.2.4
Simplifica.
Toca para ver más pasos...
Paso 4.2.4.1
Multiplica por .
Paso 4.2.4.2
Multiplica por .
Paso 4.2.5
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.2.5.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.2.5.1.1
Diferencia .
Paso 4.2.5.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2.5.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.5.1.4
Multiplica por .
Paso 4.2.5.2
Reescribe el problema mediante y .
Paso 4.2.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.2.7
La integral de con respecto a es .
Paso 4.2.8
Reescribe como .
Paso 4.2.9
Reemplaza todos los casos de con .
Paso 4.2.10
Reordena los términos.
Paso 4.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Divide la fracción en varias fracciones.
Paso 4.3.2
Divide la única integral en varias integrales.
Paso 4.3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.3.1
Cancela el factor común.
Paso 4.3.3.2
Divide por .
Paso 4.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.5
La integral de con respecto a es .
Paso 4.3.6
Aplica la regla de la constante.
Paso 4.3.7
Simplifica.
Paso 4.3.8
Reordena los términos.
Paso 4.4
Agrupa la constante de integración en el lado derecho como .