Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Factoriza.
Paso 1.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 1.1.2.1
Multiplica por .
Paso 1.1.2.2
Multiplica por .
Paso 1.1.3
Combina los numeradores sobre el denominador común.
Paso 1.1.4
Simplifica el numerador.
Paso 1.1.4.1
Factoriza de .
Paso 1.1.4.1.1
Factoriza de .
Paso 1.1.4.1.2
Factoriza de .
Paso 1.1.4.1.3
Factoriza de .
Paso 1.1.4.2
Multiplica por .
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Cancela el factor común de .
Paso 1.3.1
Factoriza de .
Paso 1.3.2
Cancela el factor común.
Paso 1.3.3
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Multiplica .
Paso 2.3.3
Simplifica.
Paso 2.3.3.1
Eleva a la potencia de .
Paso 2.3.3.2
Eleva a la potencia de .
Paso 2.3.3.3
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.3.4
Suma y .
Paso 2.3.3.5
Mueve a la izquierda de .
Paso 2.3.4
Divide la única integral en varias integrales.
Paso 2.3.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.7
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.8
Simplifica.
Paso 2.3.8.1
Simplifica.
Paso 2.3.8.2
Reordena los términos.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Paso 3.2.1
Simplifica el lado izquierdo.
Paso 3.2.1.1
Simplifica .
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
Simplifica .
Paso 3.2.2.1.1
Simplifica cada término.
Paso 3.2.2.1.1.1
Combina y .
Paso 3.2.2.1.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.1.3
Combinar.
Paso 3.2.2.1.1.4
Cancela el factor común de .
Paso 3.2.2.1.1.4.1
Factoriza de .
Paso 3.2.2.1.1.4.2
Factoriza de .
Paso 3.2.2.1.1.4.3
Cancela el factor común.
Paso 3.2.2.1.1.4.4
Reescribe la expresión.
Paso 3.2.2.1.1.5
Combina y .
Paso 3.2.2.1.1.6
Simplifica cada término.
Paso 3.2.2.1.1.6.1
Multiplica por .
Paso 3.2.2.1.1.6.2
Multiplica por .
Paso 3.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.3
Simplifica.
Paso 3.2.2.1.3.1
Cancela el factor común de .
Paso 3.2.2.1.3.1.1
Factoriza de .
Paso 3.2.2.1.3.1.2
Cancela el factor común.
Paso 3.2.2.1.3.1.3
Reescribe la expresión.
Paso 3.2.2.1.3.2
Multiplica .
Paso 3.2.2.1.3.2.1
Multiplica por .
Paso 3.2.2.1.3.2.2
Combina y .
Paso 3.2.2.1.4
Mueve el negativo al frente de la fracción.
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4
Simplifica .
Paso 3.4.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 3.4.2.1
Multiplica por .
Paso 3.4.2.2
Multiplica por .
Paso 3.4.3
Combina los numeradores sobre el denominador común.
Paso 3.4.4
Simplifica el numerador.
Paso 3.4.4.1
Factoriza de .
Paso 3.4.4.1.1
Factoriza de .
Paso 3.4.4.1.2
Factoriza de .
Paso 3.4.4.1.3
Factoriza de .
Paso 3.4.4.2
Multiplica por .
Paso 3.4.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.6
Simplifica los términos.
Paso 3.4.6.1
Combina y .
Paso 3.4.6.2
Combina los numeradores sobre el denominador común.
Paso 3.4.7
Simplifica el numerador.
Paso 3.4.7.1
Aplica la propiedad distributiva.
Paso 3.4.7.2
Multiplica por sumando los exponentes.
Paso 3.4.7.2.1
Multiplica por .
Paso 3.4.7.2.1.1
Eleva a la potencia de .
Paso 3.4.7.2.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.7.2.2
Suma y .
Paso 3.4.7.3
Mueve a la izquierda de .
Paso 3.4.7.4
Multiplica por .
Paso 3.4.8
Reescribe como .
Paso 3.4.9
Multiplica por .
Paso 3.4.10
Combina y simplifica el denominador.
Paso 3.4.10.1
Multiplica por .
Paso 3.4.10.2
Eleva a la potencia de .
Paso 3.4.10.3
Eleva a la potencia de .
Paso 3.4.10.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.10.5
Suma y .
Paso 3.4.10.6
Reescribe como .
Paso 3.4.10.6.1
Usa para reescribir como .
Paso 3.4.10.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.10.6.3
Combina y .
Paso 3.4.10.6.4
Cancela el factor común de .
Paso 3.4.10.6.4.1
Cancela el factor común.
Paso 3.4.10.6.4.2
Reescribe la expresión.
Paso 3.4.10.6.5
Evalúa el exponente.
Paso 3.4.11
Combina con la regla del producto para radicales.
Paso 3.4.12
Reordena los factores en .
Paso 3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.