Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Divide cada término en por y simplifica.
Paso 1.1.1
Divide cada término en por .
Paso 1.1.2
Simplifica el lado izquierdo.
Paso 1.1.2.1
Cancela el factor común de .
Paso 1.1.2.1.1
Cancela el factor común.
Paso 1.1.2.1.2
Reescribe la expresión.
Paso 1.1.2.2
Cancela el factor común de .
Paso 1.1.2.2.1
Cancela el factor común.
Paso 1.1.2.2.2
Divide por .
Paso 1.1.3
Simplifica el lado derecho.
Paso 1.1.3.1
Simplifica cada término.
Paso 1.1.3.1.1
Cancela el factor común de y .
Paso 1.1.3.1.1.1
Factoriza de .
Paso 1.1.3.1.1.2
Cancela los factores comunes.
Paso 1.1.3.1.1.2.1
Factoriza de .
Paso 1.1.3.1.1.2.2
Cancela el factor común.
Paso 1.1.3.1.1.2.3
Reescribe la expresión.
Paso 1.1.3.1.2
Cancela el factor común de y .
Paso 1.1.3.1.2.1
Factoriza de .
Paso 1.1.3.1.2.2
Cancela los factores comunes.
Paso 1.1.3.1.2.2.1
Factoriza de .
Paso 1.1.3.1.2.2.2
Cancela el factor común.
Paso 1.1.3.1.2.2.3
Reescribe la expresión.
Paso 1.1.3.1.3
Mueve el negativo al frente de la fracción.
Paso 1.2
Reescribe la ecuación diferencial como .
Paso 1.2.1
Reescribe como .
Paso 1.2.2
Reescribe como .
Paso 2
Sea . Sustituye por .
Paso 3
Resuelve en .
Paso 4
Usa la regla del producto para obtener la derivada de con respecto a .
Paso 5
Sustituye por .
Paso 6
Paso 6.1
Separa las variables.
Paso 6.1.1
Resuelve
Paso 6.1.1.1
Simplifica cada término.
Paso 6.1.1.1.1
Multiplica los exponentes en .
Paso 6.1.1.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.1.1.1.1.2
Multiplica por .
Paso 6.1.1.1.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6.1.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 6.1.1.2.1
Resta de ambos lados de la ecuación.
Paso 6.1.1.2.2
Combina los términos opuestos en .
Paso 6.1.1.2.2.1
Resta de .
Paso 6.1.1.2.2.2
Suma y .
Paso 6.1.1.3
Divide cada término en por y simplifica.
Paso 6.1.1.3.1
Divide cada término en por .
Paso 6.1.1.3.2
Simplifica el lado izquierdo.
Paso 6.1.1.3.2.1
Cancela el factor común de .
Paso 6.1.1.3.2.1.1
Cancela el factor común.
Paso 6.1.1.3.2.1.2
Divide por .
Paso 6.1.1.3.3
Simplifica el lado derecho.
Paso 6.1.1.3.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 6.1.1.3.3.2
Multiplica por .
Paso 6.1.2
Reagrupa los factores.
Paso 6.1.3
Multiplica ambos lados por .
Paso 6.1.4
Simplifica.
Paso 6.1.4.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 6.1.4.2
Combinar.
Paso 6.1.4.3
Cancela el factor común de .
Paso 6.1.4.3.1
Factoriza de .
Paso 6.1.4.3.2
Factoriza de .
Paso 6.1.4.3.3
Cancela el factor común.
Paso 6.1.4.3.4
Reescribe la expresión.
Paso 6.1.4.4
Multiplica por .
Paso 6.1.5
Reescribe la ecuación.
Paso 6.2
Integra ambos lados.
Paso 6.2.1
Establece una integral en cada lado.
Paso 6.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 6.2.3
Integra el lado derecho.
Paso 6.2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6.2.3.2
La integral de con respecto a es .
Paso 6.2.3.3
Simplifica.
Paso 6.2.4
Agrupa la constante de integración en el lado derecho como .
Paso 6.3
Resuelve
Paso 6.3.1
Multiplica ambos lados de la ecuación por .
Paso 6.3.2
Simplifica ambos lados de la ecuación.
Paso 6.3.2.1
Simplifica el lado izquierdo.
Paso 6.3.2.1.1
Simplifica .
Paso 6.3.2.1.1.1
Combina y .
Paso 6.3.2.1.1.2
Cancela el factor común de .
Paso 6.3.2.1.1.2.1
Cancela el factor común.
Paso 6.3.2.1.1.2.2
Reescribe la expresión.
Paso 6.3.2.2
Simplifica el lado derecho.
Paso 6.3.2.2.1
Simplifica .
Paso 6.3.2.2.1.1
Aplica la propiedad distributiva.
Paso 6.3.2.2.1.2
Multiplica por .
Paso 6.3.3
Simplifica al mover dentro del algoritmo.
Paso 6.3.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 6.4
Simplifica la constante de integración.
Paso 7
Sustituye por .
Paso 8
Paso 8.1
Multiplica ambos lados por .
Paso 8.2
Simplifica el lado izquierdo.
Paso 8.2.1
Cancela el factor común de .
Paso 8.2.1.1
Cancela el factor común.
Paso 8.2.1.2
Reescribe la expresión.