Ingresa un problema...
Cálculo Ejemplos
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Paso 3.1
Multiplica por .
Paso 3.2
Factoriza de .
Paso 3.2.1
Factoriza de .
Paso 3.2.2
Factoriza de .
Paso 3.2.3
Factoriza de .
Paso 3.3
Cancela el factor común de .
Paso 3.3.1
Cancela el factor común.
Paso 3.3.2
Divide por .
Paso 3.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.5
Combina y .
Paso 3.6
Cancela el factor común de .
Paso 3.6.1
Factoriza de .
Paso 3.6.2
Cancela el factor común.
Paso 3.6.3
Reescribe la expresión.
Paso 4
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Integra el lado izquierdo.
Paso 4.2.1
Divide la única integral en varias integrales.
Paso 4.2.2
Aplica la regla de la constante.
Paso 4.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.2.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 4.2.5
Simplifica.
Paso 4.2.5.1
Simplifica.
Paso 4.2.5.2
Combina y .
Paso 4.2.6
Reordena los términos.
Paso 4.3
Integra el lado derecho.
Paso 4.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 4.3.3
Simplifica la respuesta.
Paso 4.3.3.1
Reescribe como .
Paso 4.3.3.2
Simplifica.
Paso 4.3.3.2.1
Combina y .
Paso 4.3.3.2.2
Cancela el factor común de y .
Paso 4.3.3.2.2.1
Factoriza de .
Paso 4.3.3.2.2.2
Cancela los factores comunes.
Paso 4.3.3.2.2.2.1
Factoriza de .
Paso 4.3.3.2.2.2.2
Cancela el factor común.
Paso 4.3.3.2.2.2.3
Reescribe la expresión.
Paso 4.3.3.2.2.2.4
Divide por .
Paso 4.4
Agrupa la constante de integración en el lado derecho como .
Paso 5
Paso 5.1
Combina y .
Paso 5.2
Mueve todas las expresiones al lado izquierdo de la ecuación.
Paso 5.2.1
Suma a ambos lados de la ecuación.
Paso 5.2.2
Resta de ambos lados de la ecuación.
Paso 5.3
Multiplica por el mínimo común denominador , luego simplifica.
Paso 5.3.1
Aplica la propiedad distributiva.
Paso 5.3.2
Simplifica.
Paso 5.3.2.1
Cancela el factor común de .
Paso 5.3.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2
Reescribe la expresión.
Paso 5.3.2.2
Multiplica por .
Paso 5.3.2.3
Multiplica por .
Paso 5.3.2.4
Multiplica por .
Paso 5.3.3
Mueve .
Paso 5.3.4
Reordena y .
Paso 5.4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 5.5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 5.6
Simplifica.
Paso 5.6.1
Simplifica el numerador.
Paso 5.6.1.1
Eleva a la potencia de .
Paso 5.6.1.2
Multiplica por .
Paso 5.6.1.3
Aplica la propiedad distributiva.
Paso 5.6.1.4
Multiplica por .
Paso 5.6.1.5
Multiplica por .
Paso 5.6.1.6
Factoriza de .
Paso 5.6.1.6.1
Factoriza de .
Paso 5.6.1.6.2
Factoriza de .
Paso 5.6.1.6.3
Factoriza de .
Paso 5.6.1.6.4
Factoriza de .
Paso 5.6.1.6.5
Factoriza de .
Paso 5.6.1.7
Reescribe como .
Paso 5.6.1.7.1
Factoriza de .
Paso 5.6.1.7.2
Reescribe como .
Paso 5.6.1.7.3
Reescribe como .
Paso 5.6.1.7.4
Agrega paréntesis.
Paso 5.6.1.8
Retira los términos de abajo del radical.
Paso 5.6.1.9
Eleva a la potencia de .
Paso 5.6.2
Multiplica por .
Paso 5.6.3
Simplifica .
Paso 5.7
La respuesta final es la combinación de ambas soluciones.
Paso 6
Simplifica la constante de integración.