Ingresa un problema...
Cálculo Ejemplos
if
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Paso 3.2.1
Simplifica el lado izquierdo.
Paso 3.2.1.1
Simplifica .
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
Simplifica .
Paso 3.2.2.1.1
Combina y .
Paso 3.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.3
Combina y .
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4
Simplifica .
Paso 3.4.1
Factoriza de .
Paso 3.4.1.1
Factoriza de .
Paso 3.4.1.2
Factoriza de .
Paso 3.4.1.3
Factoriza de .
Paso 3.4.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.3
Simplifica los términos.
Paso 3.4.3.1
Combina y .
Paso 3.4.3.2
Combina los numeradores sobre el denominador común.
Paso 3.4.4
Mueve a la izquierda de .
Paso 3.4.5
Combina y .
Paso 3.4.6
Reescribe como .
Paso 3.4.7
Multiplica por .
Paso 3.4.8
Combina y simplifica el denominador.
Paso 3.4.8.1
Multiplica por .
Paso 3.4.8.2
Eleva a la potencia de .
Paso 3.4.8.3
Eleva a la potencia de .
Paso 3.4.8.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.8.5
Suma y .
Paso 3.4.8.6
Reescribe como .
Paso 3.4.8.6.1
Usa para reescribir como .
Paso 3.4.8.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.8.6.3
Combina y .
Paso 3.4.8.6.4
Cancela el factor común de .
Paso 3.4.8.6.4.1
Cancela el factor común.
Paso 3.4.8.6.4.2
Reescribe la expresión.
Paso 3.4.8.6.5
Evalúa el exponente.
Paso 3.4.9
Simplifica el numerador.
Paso 3.4.9.1
Combina con la regla del producto para radicales.
Paso 3.4.9.2
Multiplica por .
Paso 3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.
Paso 5
Como es positiva en la condición inicial , solo considera para obtener . Sustituye por y por .
Paso 6
Paso 6.1
Reescribe la ecuación como .
Paso 6.2
Multiplica ambos lados por .
Paso 6.3
Simplifica.
Paso 6.3.1
Simplifica el lado izquierdo.
Paso 6.3.1.1
Simplifica .
Paso 6.3.1.1.1
Simplifica el numerador.
Paso 6.3.1.1.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.1.1.1.2
Suma y .
Paso 6.3.1.1.2
Cancela el factor común de .
Paso 6.3.1.1.2.1
Cancela el factor común.
Paso 6.3.1.1.2.2
Reescribe la expresión.
Paso 6.3.2
Simplifica el lado derecho.
Paso 6.3.2.1
Multiplica por .
Paso 6.4
Resuelve
Paso 6.4.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 6.4.2
Simplifica cada lado de la ecuación.
Paso 6.4.2.1
Usa para reescribir como .
Paso 6.4.2.2
Simplifica el lado izquierdo.
Paso 6.4.2.2.1
Simplifica .
Paso 6.4.2.2.1.1
Multiplica los exponentes en .
Paso 6.4.2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.4.2.2.1.1.2
Cancela el factor común de .
Paso 6.4.2.2.1.1.2.1
Cancela el factor común.
Paso 6.4.2.2.1.1.2.2
Reescribe la expresión.
Paso 6.4.2.2.1.2
Simplifica.
Paso 6.4.2.3
Simplifica el lado derecho.
Paso 6.4.2.3.1
Eleva a la potencia de .
Paso 6.4.3
Divide cada término en por y simplifica.
Paso 6.4.3.1
Divide cada término en por .
Paso 6.4.3.2
Simplifica el lado izquierdo.
Paso 6.4.3.2.1
Cancela el factor común de .
Paso 6.4.3.2.1.1
Cancela el factor común.
Paso 6.4.3.2.1.2
Divide por .
Paso 6.4.3.3
Simplifica el lado derecho.
Paso 6.4.3.3.1
Cancela el factor común de y .
Paso 6.4.3.3.1.1
Factoriza de .
Paso 6.4.3.3.1.2
Cancela los factores comunes.
Paso 6.4.3.3.1.2.1
Factoriza de .
Paso 6.4.3.3.1.2.2
Cancela el factor común.
Paso 6.4.3.3.1.2.3
Reescribe la expresión.
Paso 7
Paso 7.1
Sustituye por .
Paso 7.2
Simplifica el numerador.
Paso 7.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.2
Combina y .
Paso 7.2.3
Combina los numeradores sobre el denominador común.
Paso 7.2.4
Mueve a la izquierda de .
Paso 7.2.5
Combina y .
Paso 7.2.6
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 7.2.6.1
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 7.2.6.1.1
Factoriza de .
Paso 7.2.6.1.2
Factoriza de .
Paso 7.2.6.1.3
Cancela el factor común.
Paso 7.2.6.1.4
Reescribe la expresión.
Paso 7.2.6.2
Divide por .