Ingresa un problema...
Matemática básica Ejemplos
3i36+4i102-i2013i36+4i102−i201
Paso 1
Paso 1.1
Reescribe i36i36 como (i4)9(i4)9.
3(i4)9+4i102-i2013(i4)9+4i102−i201
Paso 1.2
Reescribe i4i4 como 11.
Paso 1.2.1
Reescribe i4i4 como (i2)2(i2)2.
3((i2)2)9+4i102-i2013((i2)2)9+4i102−i201
Paso 1.2.2
Reescribe i2i2 como -1−1.
3((-1)2)9+4i102-i2013((−1)2)9+4i102−i201
Paso 1.2.3
Eleva -1−1 a la potencia de 22.
3⋅19+4i102-i2013⋅19+4i102−i201
3⋅19+4i102-i2013⋅19+4i102−i201
Paso 1.3
Uno elevado a cualquier potencia es uno.
3⋅1+4i102-i2013⋅1+4i102−i201
Paso 1.4
Multiplica 33 por 11.
3+4i102-i2013+4i102−i201
Paso 1.5
Reescribe i102i102 como (i4)25i2(i4)25i2.
Paso 1.5.1
Factoriza i100i100.
3+4(i100i2)-i2013+4(i100i2)−i201
Paso 1.5.2
Reescribe i100i100 como (i4)25(i4)25.
3+4((i4)25i2)-i2013+4((i4)25i2)−i201
3+4((i4)25i2)-i2013+4((i4)25i2)−i201
Paso 1.6
Reescribe i4i4 como 11.
Paso 1.6.1
Reescribe i4i4 como (i2)2(i2)2.
3+4(((i2)2)25i2)-i2013+4(((i2)2)25i2)−i201
Paso 1.6.2
Reescribe i2i2 como -1−1.
3+4(((-1)2)25i2)-i2013+4(((−1)2)25i2)−i201
Paso 1.6.3
Eleva -1−1 a la potencia de 22.
3+4(125i2)-i2013+4(125i2)−i201
3+4(125i2)-i2013+4(125i2)−i201
Paso 1.7
Uno elevado a cualquier potencia es uno.
3+4(1i2)-i2013+4(1i2)−i201
Paso 1.8
Multiplica i2i2 por 11.
3+4i2-i2013+4i2−i201
Paso 1.9
Reescribe i2i2 como -1−1.
3+4⋅-1-i2013+4⋅−1−i201
Paso 1.10
Multiplica 44 por -1−1.
3-4-i2013−4−i201
Paso 1.11
Reescribe i201i201 como (i4)50i(i4)50i.
Paso 1.11.1
Factoriza i200i200.
3-4-(i200i)3−4−(i200i)
Paso 1.11.2
Reescribe i200i200 como (i4)50(i4)50.
3-4-((i4)50i)3−4−((i4)50i)
3-4-((i4)50i)3−4−((i4)50i)
Paso 1.12
Reescribe i4i4 como 11.
Paso 1.12.1
Reescribe i4i4 como (i2)2(i2)2.
3-4-(((i2)2)50i)3−4−(((i2)2)50i)
Paso 1.12.2
Reescribe i2i2 como -1−1.
3-4-(((-1)2)50i)3−4−(((−1)2)50i)
Paso 1.12.3
Eleva -1−1 a la potencia de 2.
3-4-(150i)
3-4-(150i)
Paso 1.13
Uno elevado a cualquier potencia es uno.
3-4-(1i)
Paso 1.14
Multiplica i por 1.
3-4-i
3-4-i
Paso 2
Resta 4 de 3.
-1-i