Ingresa un problema...
Matemática básica Ejemplos
Paso 1
Sustituye en la ecuación. Esto hará que la fórmula cuadrática sea fácil de usar.
Paso 2
Paso 2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 2.1.1
Factoriza de .
Paso 2.1.2
Reescribe como más
Paso 2.1.3
Aplica la propiedad distributiva.
Paso 2.2
Factoriza el máximo común divisor de cada grupo.
Paso 2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4
Paso 4.1
Establece igual a .
Paso 4.2
Resuelve en .
Paso 4.2.1
Suma a ambos lados de la ecuación.
Paso 4.2.2
Divide cada término en por y simplifica.
Paso 4.2.2.1
Divide cada término en por .
Paso 4.2.2.2
Simplifica el lado izquierdo.
Paso 4.2.2.2.1
Cancela el factor común de .
Paso 4.2.2.2.1.1
Cancela el factor común.
Paso 4.2.2.2.1.2
Divide por .
Paso 5
Paso 5.1
Establece igual a .
Paso 5.2
Suma a ambos lados de la ecuación.
Paso 6
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Sustituye el valor real de de nuevo en la ecuación resuelta.
Paso 8
Resuelve la primera ecuación para .
Paso 9
Paso 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 9.2
Simplifica .
Paso 9.2.1
Reescribe como .
Paso 9.2.2
Cualquier raíz de es .
Paso 9.2.3
Simplifica el denominador.
Paso 9.2.3.1
Reescribe como .
Paso 9.2.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 9.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 9.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 9.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 9.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 10
Resuelve la segunda ecuación para .
Paso 11
Paso 11.1
Elimina los paréntesis.
Paso 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 11.3
Simplifica .
Paso 11.3.1
Reescribe como .
Paso 11.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 11.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 11.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 11.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 11.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 12
La solución a es .
Paso 13
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: