Ingresa un problema...
Matemática básica Ejemplos
Paso 1
Paso 1.1
Factoriza de .
Paso 1.1.1
Factoriza de .
Paso 1.1.2
Factoriza de .
Paso 1.1.3
Factoriza de .
Paso 1.2
Factoriza de .
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Factoriza de .
Paso 1.2.3
Factoriza de .
Paso 1.2.4
Factoriza de .
Paso 1.2.5
Factoriza de .
Paso 1.3
Factoriza.
Paso 1.3.1
Factoriza por agrupación.
Paso 1.3.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 1.3.1.1.1
Factoriza de .
Paso 1.3.1.1.2
Reescribe como más
Paso 1.3.1.1.3
Aplica la propiedad distributiva.
Paso 1.3.1.2
Factoriza el máximo común divisor de cada grupo.
Paso 1.3.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 1.3.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 1.3.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 1.3.2
Elimina los paréntesis innecesarios.
Paso 2
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.3
Como no tiene factores además de y .
es un número primo
Paso 2.4
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.5
Como no tiene factores además de y .
es un número primo
Paso 2.6
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 2.7
El factor para es en sí mismo.
ocurre vez.
Paso 2.8
El factor para es en sí mismo.
ocurre vez.
Paso 2.9
El factor para es en sí mismo.
ocurre vez.
Paso 2.10
El MCM de es el resultado de la multiplicación de todos los factores la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.11
El mínimo común múltiplo de algunos números es el número más pequeño del que los números son factores.
Paso 3
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Simplifica cada término.
Paso 3.2.1.1
Cancela el factor común de .
Paso 3.2.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.1.2
Cancela el factor común.
Paso 3.2.1.1.3
Reescribe la expresión.
Paso 3.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.1.3
Multiplica por .
Paso 3.2.1.4
Multiplica por .
Paso 3.2.1.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.6
Combina y .
Paso 3.2.1.7
Cancela el factor común de .
Paso 3.2.1.7.1
Factoriza de .
Paso 3.2.1.7.2
Cancela el factor común.
Paso 3.2.1.7.3
Reescribe la expresión.
Paso 3.2.1.8
Aplica la propiedad distributiva.
Paso 3.2.1.9
Multiplica por .
Paso 3.2.2
Simplifica mediante la adición de términos.
Paso 3.2.2.1
Suma y .
Paso 3.2.2.2
Suma y .
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.2
Cancela el factor común de .
Paso 3.3.2.1
Factoriza de .
Paso 3.3.2.2
Cancela el factor común.
Paso 3.3.2.3
Reescribe la expresión.
Paso 3.3.3
Cancela el factor común de .
Paso 3.3.3.1
Factoriza de .
Paso 3.3.3.2
Cancela el factor común.
Paso 3.3.3.3
Reescribe la expresión.
Paso 4
Paso 4.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 4.1.1
Resta de ambos lados de la ecuación.
Paso 4.1.2
Resta de .
Paso 4.2
Divide cada término en por y simplifica.
Paso 4.2.1
Divide cada término en por .
Paso 4.2.2
Simplifica el lado izquierdo.
Paso 4.2.2.1
Cancela el factor común de .
Paso 4.2.2.1.1
Cancela el factor común.
Paso 4.2.2.1.2
Divide por .
Paso 4.2.3
Simplifica el lado derecho.
Paso 4.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Forma de número mixto: