Ingresa un problema...
Matemática básica Ejemplos
3√16z22⋅6√64-3=43√16z22⋅6√64−3=4
Paso 1
Multiplica ambos lados de la ecuación por 2⋅6√64-32⋅6√64−3.
2⋅6√64-33√16z22⋅6√64-3=2⋅6√64-3⋅42⋅6√64−33√16z22⋅6√64−3=2⋅6√64−3⋅4
Paso 2
Paso 2.1
Simplifica el lado izquierdo.
Paso 2.1.1
Cancela el factor común de 2⋅6√64-32⋅6√64−3.
Paso 2.1.1.1
Cancela el factor común.
2⋅6√64-33√16z22⋅6√64-3=2⋅6√64-3⋅4
Paso 2.1.1.2
Reescribe la expresión.
3√16z2=2⋅6√64-3⋅4
3√16z2=2⋅6√64-3⋅4
3√16z2=2⋅6√64-3⋅4
Paso 2.2
Simplifica el lado derecho.
Paso 2.2.1
Simplifica 2⋅6√64-3⋅4.
Paso 2.2.1.1
Reescribe la expresión mediante la regla del exponente negativo b-n=1bn.
3√16z2=2⋅6√1643⋅4
Paso 2.2.1.2
Eleva 64 a la potencia de 3.
3√16z2=2⋅6√1262144⋅4
Paso 2.2.1.3
Reescribe 6√1262144 como 6√16√262144.
3√16z2=2⋅6√16√262144⋅4
Paso 2.2.1.4
Cualquier raíz de 1 es 1.
3√16z2=2⋅16√262144⋅4
Paso 2.2.1.5
Simplifica el denominador.
Paso 2.2.1.5.1
Reescribe 262144 como 86.
3√16z2=2⋅16√86⋅4
Paso 2.2.1.5.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
3√16z2=2⋅18⋅4
3√16z2=2⋅18⋅4
Paso 2.2.1.6
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 2.2.1.6.1
Cancela el factor común de 2.
Paso 2.2.1.6.1.1
Factoriza 2 de 8.
3√16z2=2⋅12(4)⋅4
Paso 2.2.1.6.1.2
Cancela el factor común.
3√16z2=2⋅12⋅4⋅4
Paso 2.2.1.6.1.3
Reescribe la expresión.
3√16z2=14⋅4
3√16z2=14⋅4
Paso 2.2.1.6.2
Cancela el factor común de 4.
Paso 2.2.1.6.2.1
Cancela el factor común.
3√16z2=14⋅4
Paso 2.2.1.6.2.2
Reescribe la expresión.
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
Paso 3
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cubo ambos lados de la ecuación.
3√16z23=13
Paso 4
Paso 4.1
Usa n√ax=axn para reescribir 3√16z2 como 16z23.
(16z23)3=13
Paso 4.2
Multiplica el numerador por la recíproca del denominador.
(16z2⋅13)3=13
Paso 4.3
Multiplica z2⋅13.
Paso 4.3.1
Multiplica z2 por 13.
(16z2⋅3)3=13
Paso 4.3.2
Multiplica 2 por 3.
(16z6)3=13
(16z6)3=13
Paso 4.4
Simplifica el lado izquierdo.
Paso 4.4.1
Multiplica los exponentes en (16z6)3.
Paso 4.4.1.1
Aplica la regla de la potencia y multiplica los exponentes, (am)n=amn.
16z6⋅3=13
Paso 4.4.1.2
Cancela el factor común de 3.
Paso 4.4.1.2.1
Factoriza 3 de 6.
16z3(2)⋅3=13
Paso 4.4.1.2.2
Cancela el factor común.
16z3⋅2⋅3=13
Paso 4.4.1.2.3
Reescribe la expresión.
16z2=13
16z2=13
16z2=13
16z2=13
Paso 4.5
Simplifica el lado derecho.
Paso 4.5.1
Uno elevado a cualquier potencia es uno.
16z2=1
16z2=1
16z2=1
Paso 5
Paso 5.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
ln(16z2)=ln(1)
Paso 5.2
Expande el lado izquierdo.
Paso 5.2.1
Expande ln(16z2); para ello, mueve z2 fuera del logaritmo.
z2ln(16)=ln(1)
Paso 5.2.2
Combina z2 y ln(16).
zln(16)2=ln(1)
zln(16)2=ln(1)
Paso 5.3
Simplifica el lado derecho.
Paso 5.3.1
El logaritmo natural de 1 es 0.
zln(16)2=0
zln(16)2=0
Paso 5.4
Establece el numerador igual a cero.
zln(16)=0
Paso 5.5
Divide cada término en zln(16)=0 por ln(16) y simplifica.
Paso 5.5.1
Divide cada término en zln(16)=0 por ln(16).
zln(16)ln(16)=0ln(16)
Paso 5.5.2
Simplifica el lado izquierdo.
Paso 5.5.2.1
Cancela el factor común de ln(16).
Paso 5.5.2.1.1
Cancela el factor común.
zln(16)ln(16)=0ln(16)
Paso 5.5.2.1.2
Divide z por 1.
z=0ln(16)
z=0ln(16)
z=0ln(16)
Paso 5.5.3
Simplifica el lado derecho.
Paso 5.5.3.1
Reescribe ln(16) como ln(24).
z=0ln(24)
Paso 5.5.3.2
Expande ln(24); para ello, mueve 4 fuera del logaritmo.
z=04ln(2)
Paso 5.5.3.3
Cancela el factor común de 0 y 4.
Paso 5.5.3.3.1
Factoriza 4 de 0.
z=4(0)4ln(2)
Paso 5.5.3.3.2
Cancela los factores comunes.
Paso 5.5.3.3.2.1
Factoriza 4 de 4ln(2).
z=4(0)4(ln(2))
Paso 5.5.3.3.2.2
Cancela el factor común.
z=4⋅04ln(2)
Paso 5.5.3.3.2.3
Reescribe la expresión.
z=0ln(2)
z=0ln(2)
z=0ln(2)
Paso 5.5.3.4
Divide 0 por ln(2).
z=0
z=0
z=0
z=0