Matemática básica Ejemplos

حل من أجل s ((s-1)^2)/s=2+1/s
Paso 1
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Paso 1.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 1.4
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 1.5
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 1.6
El factor para es en sí mismo.
ocurre vez.
Paso 1.7
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 2.1
Multiplica cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1
Cancela el factor común.
Paso 2.2.1.2
Reescribe la expresión.
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.1.1
Cancela el factor común.
Paso 2.3.1.2
Reescribe la expresión.
Paso 3
Resuelve la ecuación.
Toca para ver más pasos...
Paso 3.1
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.1.1
Resta de ambos lados de la ecuación.
Paso 3.1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.1.2.1
Reescribe como .
Paso 3.1.2.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 3.1.2.2.1
Aplica la propiedad distributiva.
Paso 3.1.2.2.2
Aplica la propiedad distributiva.
Paso 3.1.2.2.3
Aplica la propiedad distributiva.
Paso 3.1.2.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 3.1.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.1.2.3.1.1
Multiplica por .
Paso 3.1.2.3.1.2
Mueve a la izquierda de .
Paso 3.1.2.3.1.3
Reescribe como .
Paso 3.1.2.3.1.4
Reescribe como .
Paso 3.1.2.3.1.5
Multiplica por .
Paso 3.1.2.3.2
Resta de .
Paso 3.1.3
Resta de .
Paso 3.2
Resta de ambos lados de la ecuación.
Paso 3.3
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 3.3.1
Resta de .
Paso 3.3.2
Suma y .
Paso 3.4
Factoriza de .
Toca para ver más pasos...
Paso 3.4.1
Factoriza de .
Paso 3.4.2
Factoriza de .
Paso 3.4.3
Factoriza de .
Paso 3.5
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.6
Establece igual a .
Paso 3.7
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.7.1
Establece igual a .
Paso 3.7.2
Suma a ambos lados de la ecuación.
Paso 3.8
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Excluye las soluciones que no hagan que sea verdadera.