Matemática básica Ejemplos

حل من أجل y 30y=60y^3
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Factoriza de .
Toca para ver más pasos...
Paso 2.1
Factoriza de .
Paso 2.2
Factoriza de .
Paso 2.3
Factoriza de .
Paso 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4
Establece igual a .
Paso 5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.1
Establece igual a .
Paso 5.2
Resuelve en .
Toca para ver más pasos...
Paso 5.2.1
Resta de ambos lados de la ecuación.
Paso 5.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.2.2.1
Divide cada término en por .
Paso 5.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.2.2.1.1
Cancela el factor común.
Paso 5.2.2.2.1.2
Divide por .
Paso 5.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 5.2.4
Simplifica .
Toca para ver más pasos...
Paso 5.2.4.1
Reescribe como .
Paso 5.2.4.2
Cualquier raíz de es .
Paso 5.2.4.3
Multiplica por .
Paso 5.2.4.4
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 5.2.4.4.1
Multiplica por .
Paso 5.2.4.4.2
Eleva a la potencia de .
Paso 5.2.4.4.3
Eleva a la potencia de .
Paso 5.2.4.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.4.4.5
Suma y .
Paso 5.2.4.4.6
Reescribe como .
Toca para ver más pasos...
Paso 5.2.4.4.6.1
Usa para reescribir como .
Paso 5.2.4.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.2.4.4.6.3
Combina y .
Paso 5.2.4.4.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.4.4.6.4.1
Cancela el factor común.
Paso 5.2.4.4.6.4.2
Reescribe la expresión.
Paso 5.2.4.4.6.5
Evalúa el exponente.
Paso 5.2.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 5.2.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.2.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.2.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 6
La solución final comprende todos los valores que hacen verdadera.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: