Matemática básica Ejemplos

حل من أجل y 15÷(19+y)+15÷(19-y)=1.5
Paso 1
Simplifica .
Toca para ver más pasos...
Paso 1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.1
Reescribe la división como una fracción.
Paso 1.1.2
Reescribe la división como una fracción.
Paso 1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 1.4.1
Multiplica por .
Paso 1.4.2
Multiplica por .
Paso 1.4.3
Reordena los factores de .
Paso 1.5
Combina los numeradores sobre el denominador común.
Paso 1.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.6.1
Factoriza de .
Paso 1.6.2
Suma y .
Paso 1.6.3
Suma y .
Paso 1.6.4
Suma y .
Paso 1.7
Multiplica por .
Paso 2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Reescribe la expresión.
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 3.3.1.1
Aplica la propiedad distributiva.
Paso 3.3.1.2
Aplica la propiedad distributiva.
Paso 3.3.1.3
Aplica la propiedad distributiva.
Paso 3.3.2
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 3.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.3.2.1.1
Multiplica por .
Paso 3.3.2.1.2
Multiplica por .
Paso 3.3.2.1.3
Mueve a la izquierda de .
Paso 3.3.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.2.1.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.3.2.1.5.1
Mueve .
Paso 3.3.2.1.5.2
Multiplica por .
Paso 3.3.2.2
Suma y .
Paso 3.3.2.3
Suma y .
Paso 3.3.3
Aplica la propiedad distributiva.
Paso 3.3.4
Multiplica.
Toca para ver más pasos...
Paso 3.3.4.1
Multiplica por .
Paso 3.3.4.2
Multiplica por .
Paso 4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 4.1
Reescribe la ecuación como .
Paso 4.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 4.2.1
Resta de ambos lados de la ecuación.
Paso 4.2.2
Resta de .
Paso 4.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.1
Divide cada término en por .
Paso 4.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.2.1.1
Cancela el factor común.
Paso 4.3.2.1.2
Divide por .
Paso 4.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.3.1
Divide por .
Paso 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 4.5
Simplifica .
Toca para ver más pasos...
Paso 4.5.1
Reescribe como .
Paso 4.5.2
Reescribe como .
Paso 4.5.3
Reescribe como .
Paso 4.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 4.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 4.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 4.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.