Matemática básica Ejemplos

Hallar la varianza 30 , 31 , 32 , 33 , 34
, , , ,
Paso 1
La media de un conjunto de números es la suma dividida por la cantidad de términos.
Paso 2
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.1
Suma y .
Paso 2.2
Suma y .
Paso 2.3
Suma y .
Paso 2.4
Suma y .
Paso 3
Divide por .
Paso 4
Establece la fórmula para la varianza. La varianza de un conjunto de valores es una medida de la propagación de sus valores.
Paso 5
Establece la fórmula para la varianza de este conjunto de números.
Paso 6
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.1.1
Resta de .
Paso 6.1.2
Eleva a la potencia de .
Paso 6.1.3
Resta de .
Paso 6.1.4
Eleva a la potencia de .
Paso 6.1.5
Resta de .
Paso 6.1.6
Elevar a cualquier potencia positiva da como resultado .
Paso 6.1.7
Resta de .
Paso 6.1.8
Uno elevado a cualquier potencia es uno.
Paso 6.1.9
Resta de .
Paso 6.1.10
Eleva a la potencia de .
Paso 6.1.11
Suma y .
Paso 6.1.12
Suma y .
Paso 6.1.13
Suma y .
Paso 6.1.14
Suma y .
Paso 6.2
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 6.2.1
Resta de .
Paso 6.2.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 6.2.2.1
Factoriza de .
Paso 6.2.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 6.2.2.2.1
Factoriza de .
Paso 6.2.2.2.2
Cancela el factor común.
Paso 6.2.2.2.3
Reescribe la expresión.
Paso 7
Aproxima el resultado.