Álgebra Ejemplos

Dibujar 1/x+1/3<1/5
Paso 1
Mueve todos los términos que no contengan al lado derecho de la desigualdad.
Toca para ver más pasos...
Paso 1.1
Resta de ambos lados de la desigualdad.
Paso 1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 1.4.1
Multiplica por .
Paso 1.4.2
Multiplica por .
Paso 1.4.3
Multiplica por .
Paso 1.4.4
Multiplica por .
Paso 1.5
Combina los numeradores sobre el denominador común.
Paso 1.6
Resta de .
Paso 1.7
Mueve el negativo al frente de la fracción.
Paso 2
Multiplica ambos lados por .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.1.1.1
Cancela el factor común.
Paso 3.1.1.2
Reescribe la expresión.
Paso 3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1
Combina y .
Paso 3.2.1.2
Mueve a la izquierda de .
Paso 4
Resuelve
Toca para ver más pasos...
Paso 4.1
Reescribe la ecuación como .
Paso 4.2
Multiplica ambos lados de la ecuación por .
Paso 4.3
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 4.3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.1.1
Simplifica .
Toca para ver más pasos...
Paso 4.3.1.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.1.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 4.3.1.1.1.2
Mueve el signo menos inicial en al numerador.
Paso 4.3.1.1.1.3
Factoriza de .
Paso 4.3.1.1.1.4
Cancela el factor común.
Paso 4.3.1.1.1.5
Reescribe la expresión.
Paso 4.3.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.1.1.2.1
Factoriza de .
Paso 4.3.1.1.2.2
Cancela el factor común.
Paso 4.3.1.1.2.3
Reescribe la expresión.
Paso 4.3.1.1.3
Multiplica.
Toca para ver más pasos...
Paso 4.3.1.1.3.1
Multiplica por .
Paso 4.3.1.1.3.2
Multiplica por .
Paso 4.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.2.1
Multiplica por .
Paso 5
Obtén el dominio de .
Toca para ver más pasos...
Paso 5.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 5.2
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 6
Usa cada raíz para crear intervalos de prueba.
Paso 7
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 7.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.1.2
Reemplaza con en la desigualdad original.
Paso 7.1.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 7.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.2.2
Reemplaza con en la desigualdad original.
Paso 7.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 7.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.3.2
Reemplaza con en la desigualdad original.
Paso 7.3.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 7.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 8
La solución consiste en todos los intervalos verdaderos.
Paso 9