Álgebra Ejemplos

Hallar las raíces/ceros usando la prueba de raíces racionales f(x)=4x^2-25
Paso 1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 3
Sustituye las posibles raíces una por una en el polinomio para obtener las raíces reales. Simplifica para comprobar si el valor es , lo que significa que es una raíz.
Paso 4
Simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Aplica la regla del producto a .
Paso 4.1.2
Eleva a la potencia de .
Paso 4.1.3
Eleva a la potencia de .
Paso 4.1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.4.1
Cancela el factor común.
Paso 4.1.4.2
Reescribe la expresión.
Paso 4.2
Resta de .
Paso 5
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 6
Luego, obtén las raíces del polinomio restante. El orden del polinomio se ha reducido por .
Toca para ver más pasos...
Paso 6.1
Coloca los números que representan el divisor y el dividendo en una configuración tipo división.
  
Paso 6.2
El primer número en el dividendo se pone en la primera posición del área del resultado (debajo de la recta horizontal).
  
Paso 6.3
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
  
Paso 6.4
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
  
Paso 6.5
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
 
Paso 6.6
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
 
Paso 6.7
Todos los números excepto el último se convierten en coeficientes del polinomio del cociente. El último valor de la línea del resultado es el resto.
Paso 6.8
Simplifica el polinomio del cociente.
Paso 7
Factoriza de .
Toca para ver más pasos...
Paso 7.1
Factoriza de .
Paso 7.2
Factoriza de .
Paso 7.3
Factoriza de .
Paso 8
Suma a ambos lados de la ecuación.
Paso 9
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 9.1
Divide cada término en por .
Paso 9.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 9.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 9.2.1.1
Cancela el factor común.
Paso 9.2.1.2
Divide por .
Paso 10
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 11
Simplifica .
Toca para ver más pasos...
Paso 11.1
Reescribe como .
Paso 11.2
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.1
Reescribe como .
Paso 11.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 11.3
Simplifica el denominador.
Toca para ver más pasos...
Paso 11.3.1
Reescribe como .
Paso 11.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 12
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 12.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 12.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 12.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 13