Álgebra Ejemplos

Convertir a notación de intervalo 1/(-x)<=5/(7-x)
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Simplifica .
Toca para ver más pasos...
Paso 2.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.1.1
Reescribe como .
Paso 2.1.2
Mueve el negativo al frente de la fracción.
Paso 2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 2.4.1
Multiplica por .
Paso 2.4.2
Multiplica por .
Paso 2.4.3
Reordena los factores de .
Paso 2.5
Combina los numeradores sobre el denominador común.
Paso 2.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.6.1
Aplica la propiedad distributiva.
Paso 2.6.2
Multiplica por .
Paso 2.6.3
Multiplica .
Toca para ver más pasos...
Paso 2.6.3.1
Multiplica por .
Paso 2.6.3.2
Multiplica por .
Paso 2.6.4
Resta de .
Paso 2.7
Reescribe como .
Paso 2.8
Factoriza de .
Paso 2.9
Factoriza de .
Paso 2.10
Mueve el negativo al frente de la fracción.
Paso 3
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 4
Resta de ambos lados de la ecuación.
Paso 5
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.1
Divide cada término en por .
Paso 5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.1.1
Cancela el factor común.
Paso 5.2.1.2
Divide por .
Paso 5.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.1
Mueve el negativo al frente de la fracción.
Paso 6
Resta de ambos lados de la ecuación.
Paso 7
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 7.1
Divide cada término en por .
Paso 7.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 7.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 7.2.2
Divide por .
Paso 7.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 7.3.1
Divide por .
Paso 8
Resuelve cada factor para obtener los valores donde la expresión de valor absoluto va de positiva a negativa.
Paso 9
Consolida las soluciones.
Paso 10
Obtén el dominio de .
Toca para ver más pasos...
Paso 10.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 10.2
Resuelve
Toca para ver más pasos...
Paso 10.2.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 10.2.2
Establece igual a .
Paso 10.2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 10.2.3.1
Establece igual a .
Paso 10.2.3.2
Resuelve en .
Toca para ver más pasos...
Paso 10.2.3.2.1
Resta de ambos lados de la ecuación.
Paso 10.2.3.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 10.2.3.2.2.1
Divide cada término en por .
Paso 10.2.3.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 10.2.3.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 10.2.3.2.2.2.2
Divide por .
Paso 10.2.3.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 10.2.3.2.2.3.1
Divide por .
Paso 10.2.4
La solución final comprende todos los valores que hacen verdadera.
Paso 10.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 11
Usa cada raíz para crear intervalos de prueba.
Paso 12
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 12.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 12.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 12.1.2
Reemplaza con en la desigualdad original.
Paso 12.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 12.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 12.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 12.2.2
Reemplaza con en la desigualdad original.
Paso 12.2.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 12.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 12.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 12.3.2
Reemplaza con en la desigualdad original.
Paso 12.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 12.4
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 12.4.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 12.4.2
Reemplaza con en la desigualdad original.
Paso 12.4.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 12.5
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Paso 13
La solución consiste en todos los intervalos verdaderos.
o
Paso 14
Convierte la desigualdad a notación de intervalo.
Paso 15