Álgebra Ejemplos

Hallar la directriz. y^2=4x
Paso 1
Reescribe la ecuación en forma de vértice.
Toca para ver más pasos...
Paso 1.1
Aísla al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.1.1
Reescribe la ecuación como .
Paso 1.1.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.2.1
Divide cada término en por .
Paso 1.1.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.2.1.1
Cancela el factor común.
Paso 1.1.2.2.1.2
Divide por .
Paso 1.2
Completa el cuadrado de .
Toca para ver más pasos...
Paso 1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.2.2
Considera la forma de vértice de una parábola.
Paso 1.2.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.2.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.2.3.2.1.1
Factoriza de .
Paso 1.2.3.2.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.2.3.2.1.2.1
Cancela el factor común.
Paso 1.2.3.2.1.2.2
Reescribe la expresión.
Paso 1.2.3.2.2
Multiplica el numerador por la recíproca del denominador.
Paso 1.2.3.2.3
Multiplica por .
Paso 1.2.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.4.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.2.4.2.1.2
Combina y .
Paso 1.2.4.2.1.3
Divide por .
Paso 1.2.4.2.1.4
Divide por .
Paso 1.2.4.2.1.5
Multiplica por .
Paso 1.2.4.2.2
Suma y .
Paso 1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.3
Establece igual al nuevo lado derecho.
Paso 2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 3
Obtén el vértice .
Paso 4
Obtén , la distancia desde el vértice hasta el foco.
Toca para ver más pasos...
Paso 4.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 4.2
Sustituye el valor de en la fórmula.
Paso 4.3
Simplifica.
Toca para ver más pasos...
Paso 4.3.1
Combina y .
Paso 4.3.2
Simplifica mediante la división de números.
Toca para ver más pasos...
Paso 4.3.2.1
Divide por .
Paso 4.3.2.2
Divide por .
Paso 5
Obtén la directriz.
Toca para ver más pasos...
Paso 5.1
La directriz de una parábola es la recta vertical que se obtiene al restar de la coordenada x del vértice si la parábola abre hacia la izquierda o hacia la derecha.
Paso 5.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 6