Ingresa un problema...
Álgebra Ejemplos
Paso 1
Para eliminar el radical en el lazo izquierdo de la desigualdad, eleva al cuadrado ambos lados de la desigualdad.
Paso 2
Paso 2.1
Usa para reescribir como .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Simplifica .
Paso 2.2.1.1
Multiplica los exponentes en .
Paso 2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.1.2
Cancela el factor común de .
Paso 2.2.1.1.2.1
Cancela el factor común.
Paso 2.2.1.1.2.2
Reescribe la expresión.
Paso 2.2.1.2
Simplifica.
Paso 2.3
Simplifica el lado derecho.
Paso 2.3.1
Eleva a la potencia de .
Paso 3
Paso 3.1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 3.2
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 4
Usa cada raíz para crear intervalos de prueba.
Paso 5
Paso 5.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 5.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 5.1.2
Reemplaza con en la desigualdad original.
Paso 5.1.3
El lado izquierdo no es igual al lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 5.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 5.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 5.2.2
Reemplaza con en la desigualdad original.
Paso 5.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 5.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 5.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 5.3.2
Reemplaza con en la desigualdad original.
Paso 5.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 5.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 6
La solución consiste en todos los intervalos verdaderos.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 8