Álgebra Ejemplos

Hallar la recta perpendicular -3x+y=-5 that contains the point (1,4)
that contains the point
Paso 1
Suma a ambos lados de la ecuación.
Paso 2
Obtén la pendiente cuando .
Toca para ver más pasos...
Paso 2.1
Reescribe en ecuación explícita.
Toca para ver más pasos...
Paso 2.1.1
La ecuación explícita es , donde es la pendiente y es la intersección con y.
Paso 2.1.2
Reordena y .
Paso 2.2
Mediante la ecuación explícita, la pendiente es .
Paso 3
La ecuación de una perpendicular debe tener una pendiente que sea el recíproco negativo de la pendiente original.
Paso 4
Obtén la ecuación de la línea perpendicular con la fórmula de punto-pendiente.
Toca para ver más pasos...
Paso 4.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 4.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 5
Escribe en la forma .
Toca para ver más pasos...
Paso 5.1
Resuelve
Toca para ver más pasos...
Paso 5.1.1
Simplifica .
Toca para ver más pasos...
Paso 5.1.1.1
Reescribe.
Paso 5.1.1.2
Simplifica mediante la adición de ceros.
Paso 5.1.1.3
Aplica la propiedad distributiva.
Paso 5.1.1.4
Combina y .
Paso 5.1.1.5
Multiplica .
Toca para ver más pasos...
Paso 5.1.1.5.1
Multiplica por .
Paso 5.1.1.5.2
Multiplica por .
Paso 5.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 5.1.2.1
Suma a ambos lados de la ecuación.
Paso 5.1.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.1.2.3
Combina y .
Paso 5.1.2.4
Combina los numeradores sobre el denominador común.
Paso 5.1.2.5
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.1.2.5.1
Multiplica por .
Paso 5.1.2.5.2
Suma y .
Paso 5.2
Reordena los términos.
Paso 5.3
Elimina los paréntesis.
Paso 6