Álgebra Ejemplos

Hallar la raíces (ceros) t^2(3t^2-10t+7)
Paso 1
Establece igual a .
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Simplifica .
Toca para ver más pasos...
Paso 2.1.1
Aplica la propiedad distributiva.
Paso 2.1.2
Simplifica.
Toca para ver más pasos...
Paso 2.1.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 2.1.2.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 2.1.2.3
Mueve a la izquierda de .
Paso 2.1.3
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.3.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 2.1.3.1.1
Mueve .
Paso 2.1.3.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.1.3.1.3
Suma y .
Paso 2.1.3.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 2.1.3.2.1
Mueve .
Paso 2.1.3.2.2
Multiplica por .
Toca para ver más pasos...
Paso 2.1.3.2.2.1
Eleva a la potencia de .
Paso 2.1.3.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.1.3.2.3
Suma y .
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.2.1
Factoriza de .
Toca para ver más pasos...
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.1.4
Factoriza de .
Paso 2.2.1.5
Factoriza de .
Paso 2.2.2
Factoriza.
Toca para ver más pasos...
Paso 2.2.2.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 2.2.2.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 2.2.2.1.1.1
Factoriza de .
Paso 2.2.2.1.1.2
Reescribe como más
Paso 2.2.2.1.1.3
Aplica la propiedad distributiva.
Paso 2.2.2.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.2.2.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2.2.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.2.2.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Toca para ver más pasos...
Paso 2.4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4.2.2
Simplifica .
Toca para ver más pasos...
Paso 2.4.2.2.1
Reescribe como .
Paso 2.4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.4.2.2.3
Más o menos es .
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Suma a ambos lados de la ecuación.
Paso 2.6
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Resuelve en .
Toca para ver más pasos...
Paso 2.6.2.1
Suma a ambos lados de la ecuación.
Paso 2.6.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.6.2.2.1
Divide cada término en por .
Paso 2.6.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.6.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.6.2.2.2.1.1
Cancela el factor común.
Paso 2.6.2.2.2.1.2
Divide por .
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3