Álgebra Ejemplos

Hallar la raíces (ceros) x^5+x^3+8x^2+8
Paso 1
Establece igual a .
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.1.1
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.1.1.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.1.1.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.1.2
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.1.3
Reescribe como .
Paso 2.1.4
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la suma de cubos, , donde y .
Paso 2.1.5
Factoriza.
Toca para ver más pasos...
Paso 2.1.5.1
Simplifica.
Toca para ver más pasos...
Paso 2.1.5.1.1
Multiplica por .
Paso 2.1.5.1.2
Eleva a la potencia de .
Paso 2.1.5.2
Elimina los paréntesis innecesarios.
Paso 2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.1
Establece igual a .
Paso 2.3.2
Resuelve en .
Toca para ver más pasos...
Paso 2.3.2.1
Resta de ambos lados de la ecuación.
Paso 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 2.3.2.3
Reescribe como .
Paso 2.3.2.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.3.2.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.3.2.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.3.2.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resta de ambos lados de la ecuación.
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resuelve en .
Toca para ver más pasos...
Paso 2.5.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2.5.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 2.5.2.3
Simplifica.
Toca para ver más pasos...
Paso 2.5.2.3.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.5.2.3.1.1
Eleva a la potencia de .
Paso 2.5.2.3.1.2
Multiplica .
Toca para ver más pasos...
Paso 2.5.2.3.1.2.1
Multiplica por .
Paso 2.5.2.3.1.2.2
Multiplica por .
Paso 2.5.2.3.1.3
Resta de .
Paso 2.5.2.3.1.4
Reescribe como .
Paso 2.5.2.3.1.5
Reescribe como .
Paso 2.5.2.3.1.6
Reescribe como .
Paso 2.5.2.3.1.7
Reescribe como .
Toca para ver más pasos...
Paso 2.5.2.3.1.7.1
Factoriza de .
Paso 2.5.2.3.1.7.2
Reescribe como .
Paso 2.5.2.3.1.8
Retira los términos de abajo del radical.
Paso 2.5.2.3.1.9
Mueve a la izquierda de .
Paso 2.5.2.3.2
Multiplica por .
Paso 2.5.2.3.3
Simplifica .
Paso 2.5.2.4
La respuesta final es la combinación de ambas soluciones.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 3