Álgebra Ejemplos

Hallar todas las soluciones complejas cos(theta)^2=1/2
Paso 1
Multiplica cada término por un factor de que igualará todos los denominadores. En este caso, todos los términos necesitan un denominador de .
Paso 2
Multiplica la expresión por un factor de para crear el mínimo común denominador (mcd) de .
Paso 3
Mueve a la izquierda de .
Paso 4
Simplifica .
Toca para ver más pasos...
Paso 4.1
Divide por .
Paso 4.2
Multiplica por .
Paso 5
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 6
Simplifica .
Toca para ver más pasos...
Paso 6.1
Reescribe como .
Paso 6.2
Cualquier raíz de es .
Paso 6.3
Multiplica por .
Paso 6.4
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 6.4.1
Multiplica por .
Paso 6.4.2
Eleva a la potencia de .
Paso 6.4.3
Eleva a la potencia de .
Paso 6.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 6.4.5
Suma y .
Paso 6.4.6
Reescribe como .
Toca para ver más pasos...
Paso 6.4.6.1
Usa para reescribir como .
Paso 6.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.4.6.3
Combina y .
Paso 6.4.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.4.6.4.1
Cancela el factor común.
Paso 6.4.6.4.2
Reescribe la expresión.
Paso 6.4.6.5
Evalúa el exponente.
Paso 7
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 7.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 7.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 7.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 8
Establece cada una de las soluciones para obtener el valor de .
Paso 9
Resuelve en .
Toca para ver más pasos...
Paso 9.1
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 9.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 9.2.1
El valor exacto de es .
Paso 9.3
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 9.4
Simplifica .
Toca para ver más pasos...
Paso 9.4.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 9.4.2
Combina fracciones.
Toca para ver más pasos...
Paso 9.4.2.1
Combina y .
Paso 9.4.2.2
Combina los numeradores sobre el denominador común.
Paso 9.4.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 9.4.3.1
Multiplica por .
Paso 9.4.3.2
Resta de .
Paso 9.5
Obtén el período de .
Toca para ver más pasos...
Paso 9.5.1
El período de la función puede calcularse mediante .
Paso 9.5.2
Reemplaza con en la fórmula para el período.
Paso 9.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 9.5.4
Divide por .
Paso 9.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 10
Resuelve en .
Toca para ver más pasos...
Paso 10.1
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 10.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 10.2.1
El valor exacto de es .
Paso 10.3
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Paso 10.4
Simplifica .
Toca para ver más pasos...
Paso 10.4.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 10.4.2
Combina fracciones.
Toca para ver más pasos...
Paso 10.4.2.1
Combina y .
Paso 10.4.2.2
Combina los numeradores sobre el denominador común.
Paso 10.4.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 10.4.3.1
Multiplica por .
Paso 10.4.3.2
Resta de .
Paso 10.5
Obtén el período de .
Toca para ver más pasos...
Paso 10.5.1
El período de la función puede calcularse mediante .
Paso 10.5.2
Reemplaza con en la fórmula para el período.
Paso 10.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.5.4
Divide por .
Paso 10.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 11
Enumera todas las soluciones.
, para cualquier número entero
Paso 12
Consolida las respuestas.
, para cualquier número entero