Álgebra Ejemplos

حل من أجل x (2x)^-2=16
Paso 1
Simplifica .
Toca para ver más pasos...
Paso 1.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.2.1
Aplica la regla del producto a .
Paso 1.2.2
Eleva a la potencia de .
Paso 2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1
Factoriza de .
Paso 3.2.2.2
Cancela el factor común.
Paso 3.2.2.3
Reescribe la expresión.
Paso 3.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.3.1
Cancela el factor común.
Paso 3.2.3.2
Reescribe la expresión.
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Multiplica por .
Paso 4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 4.1
Reescribe la ecuación como .
Paso 4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.2.1
Divide cada término en por .
Paso 4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.2.1.1
Cancela el factor común.
Paso 4.2.2.1.2
Divide por .
Paso 4.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4.4
Simplifica .
Toca para ver más pasos...
Paso 4.4.1
Reescribe como .
Paso 4.4.2
Cualquier raíz de es .
Paso 4.4.3
Simplifica el denominador.
Toca para ver más pasos...
Paso 4.4.3.1
Reescribe como .
Paso 4.4.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 4.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 4.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 4.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: