Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Factoriza de .
Paso 1.2
Factoriza de .
Paso 1.3
Cancela el factor común.
Paso 1.4
Reescribe la expresión.
Paso 2
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 2.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.4
tiene factores de y .
Paso 2.5
Multiplica por .
Paso 2.6
El factor para es en sí mismo.
ocurre vez.
Paso 2.7
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.8
El MCM para es la parte numérica multiplicada por la parte variable.
Paso 3
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.2
Cancela el factor común de .
Paso 3.2.2.1
Factoriza de .
Paso 3.2.2.2
Cancela el factor común.
Paso 3.2.2.3
Reescribe la expresión.
Paso 3.2.3
Cancela el factor común de .
Paso 3.2.3.1
Cancela el factor común.
Paso 3.2.3.2
Reescribe la expresión.
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.2
Cancela el factor común de .
Paso 3.3.2.1
Factoriza de .
Paso 3.3.2.2
Cancela el factor común.
Paso 3.3.2.3
Reescribe la expresión.
Paso 3.3.3
Cancela el factor común de .
Paso 3.3.3.1
Cancela el factor común.
Paso 3.3.3.2
Reescribe la expresión.
Paso 4
Como , la ecuación siempre será verdadera para cualquier valor de .
Todos los números reales
Paso 5
El resultado puede mostrarse de distintas formas.
Todos los números reales
Notación de intervalo: