Álgebra Ejemplos

Gráfico y=csc(pi-x)
Paso 1
Obtén las asíntotas.
Toca para ver más pasos...
Paso 1.1
Para cualquier , las asíntotas verticales se producen en , donde es un número entero. Usa el período básico de , , a fin de obtener las asíntotas verticales de . Establece el interior de la función cosecante, , para que sea igual a a fin de obtener dónde se produce la asíntota vertical de .
Paso 1.2
Resuelve
Toca para ver más pasos...
Paso 1.2.1
Resta de ambos lados de la ecuación.
Paso 1.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.2.2.2
Divide por .
Paso 1.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.2.3.2
Divide por .
Paso 1.3
Establece el interior de la cosecante igual a .
Paso 1.4
Resuelve
Toca para ver más pasos...
Paso 1.4.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.4.1.1
Resta de ambos lados de la ecuación.
Paso 1.4.1.2
Resta de .
Paso 1.4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.4.2.1
Divide cada término en por .
Paso 1.4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.4.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.4.2.2.2
Divide por .
Paso 1.4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.4.2.3.1
Mueve el negativo del denominador de .
Paso 1.4.2.3.2
Reescribe como .
Paso 1.5
El período básico de se producirá en , donde y son asíntotas verticales.
Paso 1.6
Obtén el período para buscar dónde existen las asíntotas verticales. Las asíntotas verticales ocurren cada medio período.
Toca para ver más pasos...
Paso 1.6.1
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 1.6.2
Divide por .
Paso 1.7
Las asíntotas verticales de se producen en , y en cada , donde es un número entero. Esta es la mitad del período.
Paso 1.8
La cosecante solo tiene asíntotas verticales.
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
Paso 2
Usa la forma para obtener las variables utilizadas para obtener la amplitud, el período, el desfase y el desplazamiento vertical.
Paso 3
Como la gráfica de la función no tiene un valor máximo o mínimo, no puede haber un valor para la amplitud.
Amplitud: ninguna
Paso 4
Obtén el período de .
Toca para ver más pasos...
Paso 4.1
El período de la función puede calcularse mediante .
Paso 4.2
Reemplaza con en la fórmula para el período.
Paso 4.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 4.4
Divide por .
Paso 5
Obtén el desfase con la fórmula .
Toca para ver más pasos...
Paso 5.1
El desfase de la función puede calcularse a partir de .
Desfase:
Paso 5.2
Reemplaza los valores de y en la ecuación para el desfase.
Desfase:
Paso 5.3
La división de dos valores negativos da como resultado un valor positivo.
Desfase:
Paso 5.4
Divide por .
Desfase:
Desfase:
Paso 6
Enumera las propiedades de la función trigonométrica.
Amplitud: ninguna
Período:
Desfase: ( a la derecha)
Desplazamiento vertical: ninguno
Paso 7
La función trigonométrica puede representarse de forma gráfica con la amplitud, el período, el desfase, el desplazamiento vertical y los puntos.
Asíntotas verticales: donde es un número entero
Amplitud: ninguna
Período:
Desfase: ( a la derecha)
Desplazamiento vertical: ninguno
Paso 8