Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Divide cada término en por y simplifica.
Paso 1.2.1
Divide cada término en por .
Paso 1.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.2.2
Divide por .
Paso 1.2.3
Simplifica el lado derecho.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Divide por .
Paso 1.2.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.3.1.3
Divide por .
Paso 2
Paso 2.1
Reemplaza todos los casos de en por .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Simplifica .
Paso 2.2.1.1
Simplifica cada término.
Paso 2.2.1.1.1
Reescribe como .
Paso 2.2.1.1.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 2.2.1.1.2.1
Aplica la propiedad distributiva.
Paso 2.2.1.1.2.2
Aplica la propiedad distributiva.
Paso 2.2.1.1.2.3
Aplica la propiedad distributiva.
Paso 2.2.1.1.3
Simplifica y combina los términos similares.
Paso 2.2.1.1.3.1
Simplifica cada término.
Paso 2.2.1.1.3.1.1
Multiplica por .
Paso 2.2.1.1.3.1.2
Reescribe como .
Paso 2.2.1.1.3.1.3
Mueve a la izquierda de .
Paso 2.2.1.1.3.1.4
Reescribe como .
Paso 2.2.1.1.3.1.5
Multiplica por sumando los exponentes.
Paso 2.2.1.1.3.1.5.1
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.1.1.3.1.5.2
Suma y .
Paso 2.2.1.1.3.2
Resta de .
Paso 2.2.1.2
Combina los términos opuestos en .
Paso 2.2.1.2.1
Resta de .
Paso 2.2.1.2.2
Suma y .
Paso 3
Paso 3.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 3.1.1
Resta de ambos lados de la ecuación.
Paso 3.1.2
Resta de .
Paso 3.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.3
Simplifica .
Paso 3.3.1
Reescribe como .
Paso 3.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Paso 4.1
Reemplaza todos los casos de en por .
Paso 4.2
Simplifica el lado derecho.
Paso 4.2.1
Simplifica .
Paso 4.2.1.1
Eleva a la potencia de .
Paso 4.2.1.2
Suma y .
Paso 5
Paso 5.1
Reemplaza todos los casos de en por .
Paso 5.2
Simplifica el lado derecho.
Paso 5.2.1
Simplifica .
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Suma y .
Paso 6
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma de punto:
Forma de la ecuación:
Paso 8