Álgebra Ejemplos

حل متراجحة القيمة المطلقة من أجل b 2|10b+7|-1>73
Paso 1
Escribe como una función definida por partes.
Toca para ver más pasos...
Paso 1.1
Para obtener el intervalo de la primera parte, obtén dónde el interior del valor absoluto no es negativo.
Paso 1.2
Resuelve la desigualdad.
Toca para ver más pasos...
Paso 1.2.1
Resta de ambos lados de la desigualdad.
Paso 1.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.2.2.1.1
Cancela el factor común.
Paso 1.2.2.2.1.2
Divide por .
Paso 1.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 1.3
En la parte donde no es negativa, elimina el valor absoluto.
Paso 1.4
Para obtener el intervalo de la segunda parte, obtén dónde el interior del valor absoluto es negativo.
Paso 1.5
Resuelve la desigualdad.
Toca para ver más pasos...
Paso 1.5.1
Resta de ambos lados de la desigualdad.
Paso 1.5.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.5.2.1
Divide cada término en por .
Paso 1.5.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.5.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.5.2.2.1.1
Cancela el factor común.
Paso 1.5.2.2.1.2
Divide por .
Paso 1.5.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.5.2.3.1
Mueve el negativo al frente de la fracción.
Paso 1.6
En la parte donde es negativa, elimina el valor absoluto y multiplica por .
Paso 1.7
Escribe como una función definida por partes.
Paso 1.8
Simplifica .
Toca para ver más pasos...
Paso 1.8.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.8.1.1
Aplica la propiedad distributiva.
Paso 1.8.1.2
Multiplica por .
Paso 1.8.1.3
Multiplica por .
Paso 1.8.2
Resta de .
Paso 1.9
Simplifica .
Toca para ver más pasos...
Paso 1.9.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.9.1.1
Aplica la propiedad distributiva.
Paso 1.9.1.2
Multiplica por .
Paso 1.9.1.3
Multiplica por .
Paso 1.9.1.4
Aplica la propiedad distributiva.
Paso 1.9.1.5
Multiplica por .
Paso 1.9.1.6
Multiplica por .
Paso 1.9.2
Resta de .
Paso 2
Resuelve en .
Toca para ver más pasos...
Paso 2.1
Mueve todos los términos que no contengan al lado derecho de la desigualdad.
Toca para ver más pasos...
Paso 2.1.1
Resta de ambos lados de la desigualdad.
Paso 2.1.2
Resta de .
Paso 2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.3.1
Divide por .
Paso 3
Resuelve en .
Toca para ver más pasos...
Paso 3.1
Mueve todos los términos que no contengan al lado derecho de la desigualdad.
Toca para ver más pasos...
Paso 3.1.1
Suma a ambos lados de la desigualdad.
Paso 3.1.2
Suma y .
Paso 3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.1
Cancela el factor común.
Paso 3.2.2.1.2
Divide por .
Paso 3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.2.3.1.1
Factoriza de .
Paso 3.2.3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.2.3.1.2.1
Factoriza de .
Paso 3.2.3.1.2.2
Cancela el factor común.
Paso 3.2.3.1.2.3
Reescribe la expresión.
Paso 3.2.3.2
Mueve el negativo al frente de la fracción.
Paso 4
Obtén la unión de las soluciones.
o
Paso 5
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 6