Álgebra Ejemplos

Hallar el dominio y el rango x^2+6x+y^2-2y-15=0
Paso 1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.1.1
Eleva a la potencia de .
Paso 3.1.2
Multiplica por .
Paso 3.1.3
Aplica la propiedad distributiva.
Paso 3.1.4
Simplifica.
Toca para ver más pasos...
Paso 3.1.4.1
Multiplica por .
Paso 3.1.4.2
Multiplica por .
Paso 3.1.5
Suma y .
Paso 3.1.6
Reescribe en forma factorizada.
Toca para ver más pasos...
Paso 3.1.6.1
Factoriza de .
Toca para ver más pasos...
Paso 3.1.6.1.1
Factoriza de .
Paso 3.1.6.1.2
Factoriza de .
Paso 3.1.6.1.3
Factoriza de .
Paso 3.1.6.1.4
Factoriza de .
Paso 3.1.6.1.5
Factoriza de .
Paso 3.1.6.2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 3.1.6.2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 3.1.6.2.1.1
Factoriza de .
Paso 3.1.6.2.1.2
Reescribe como más
Paso 3.1.6.2.1.3
Aplica la propiedad distributiva.
Paso 3.1.6.2.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 3.1.6.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 3.1.6.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 3.1.6.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3.1.7
Reescribe como .
Toca para ver más pasos...
Paso 3.1.7.1
Reescribe como .
Paso 3.1.7.2
Agrega paréntesis.
Paso 3.1.8
Retira los términos de abajo del radical.
Paso 3.2
Multiplica por .
Paso 3.3
Simplifica .
Paso 4
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.1
Eleva a la potencia de .
Paso 4.1.2
Multiplica por .
Paso 4.1.3
Aplica la propiedad distributiva.
Paso 4.1.4
Simplifica.
Toca para ver más pasos...
Paso 4.1.4.1
Multiplica por .
Paso 4.1.4.2
Multiplica por .
Paso 4.1.5
Suma y .
Paso 4.1.6
Reescribe en forma factorizada.
Toca para ver más pasos...
Paso 4.1.6.1
Factoriza de .
Toca para ver más pasos...
Paso 4.1.6.1.1
Factoriza de .
Paso 4.1.6.1.2
Factoriza de .
Paso 4.1.6.1.3
Factoriza de .
Paso 4.1.6.1.4
Factoriza de .
Paso 4.1.6.1.5
Factoriza de .
Paso 4.1.6.2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 4.1.6.2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 4.1.6.2.1.1
Factoriza de .
Paso 4.1.6.2.1.2
Reescribe como más
Paso 4.1.6.2.1.3
Aplica la propiedad distributiva.
Paso 4.1.6.2.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 4.1.6.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.1.6.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.1.6.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.1.7
Reescribe como .
Toca para ver más pasos...
Paso 4.1.7.1
Reescribe como .
Paso 4.1.7.2
Agrega paréntesis.
Paso 4.1.8
Retira los términos de abajo del radical.
Paso 4.2
Multiplica por .
Paso 4.3
Simplifica .
Paso 4.4
Cambia a .
Paso 5
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.1.1
Eleva a la potencia de .
Paso 5.1.2
Multiplica por .
Paso 5.1.3
Aplica la propiedad distributiva.
Paso 5.1.4
Simplifica.
Toca para ver más pasos...
Paso 5.1.4.1
Multiplica por .
Paso 5.1.4.2
Multiplica por .
Paso 5.1.5
Suma y .
Paso 5.1.6
Reescribe en forma factorizada.
Toca para ver más pasos...
Paso 5.1.6.1
Factoriza de .
Toca para ver más pasos...
Paso 5.1.6.1.1
Factoriza de .
Paso 5.1.6.1.2
Factoriza de .
Paso 5.1.6.1.3
Factoriza de .
Paso 5.1.6.1.4
Factoriza de .
Paso 5.1.6.1.5
Factoriza de .
Paso 5.1.6.2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 5.1.6.2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 5.1.6.2.1.1
Factoriza de .
Paso 5.1.6.2.1.2
Reescribe como más
Paso 5.1.6.2.1.3
Aplica la propiedad distributiva.
Paso 5.1.6.2.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 5.1.6.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 5.1.6.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 5.1.6.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 5.1.7
Reescribe como .
Toca para ver más pasos...
Paso 5.1.7.1
Reescribe como .
Paso 5.1.7.2
Agrega paréntesis.
Paso 5.1.8
Retira los términos de abajo del radical.
Paso 5.2
Multiplica por .
Paso 5.3
Simplifica .
Paso 5.4
Cambia a .
Paso 6
La respuesta final es la combinación de ambas soluciones.
Paso 7
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 8
Resuelve
Toca para ver más pasos...
Paso 8.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 8.2
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 8.2.1
Establece igual a .
Paso 8.2.2
Resuelve en .
Toca para ver más pasos...
Paso 8.2.2.1
Resta de ambos lados de la ecuación.
Paso 8.2.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 8.2.2.2.1
Divide cada término en por .
Paso 8.2.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 8.2.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 8.2.2.2.2.2
Divide por .
Paso 8.2.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 8.2.2.2.3.1
Divide por .
Paso 8.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 8.3.1
Establece igual a .
Paso 8.3.2
Resta de ambos lados de la ecuación.
Paso 8.4
La solución final comprende todos los valores que hacen verdadera.
Paso 8.5
Usa cada raíz para crear intervalos de prueba.
Paso 8.6
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 8.6.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 8.6.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 8.6.1.2
Reemplaza con en la desigualdad original.
Paso 8.6.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 8.6.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 8.6.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 8.6.2.2
Reemplaza con en la desigualdad original.
Paso 8.6.2.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 8.6.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 8.6.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 8.6.3.2
Reemplaza con en la desigualdad original.
Paso 8.6.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 8.6.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 8.7
La solución consiste en todos los intervalos verdaderos.
Paso 9
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 10
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 11
Determina el dominio y el rango.
Dominio:
Rango:
Paso 12