Álgebra Ejemplos

Hallar la inversa f(x)=3( raíz cúbica de x-1)+10
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Resuelve
Toca para ver más pasos...
Paso 3.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1.1
Aplica la propiedad distributiva.
Paso 3.2.1.1.2
Multiplica por .
Paso 3.2.1.2
Suma y .
Paso 3.2.2
Resta de ambos lados de la ecuación.
Paso 3.2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.2.3.1
Divide cada término en por .
Paso 3.2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.3.2.1.1
Cancela el factor común.
Paso 3.2.3.2.1.2
Divide por .
Paso 3.2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.3.3.1
Mueve el negativo al frente de la fracción.
Paso 3.3
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cubo ambos lados de la ecuación.
Paso 3.4
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 3.4.1
Usa para reescribir como .
Paso 3.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.4.2.1.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 3.4.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.2.1.1.2.1
Cancela el factor común.
Paso 3.4.2.1.1.2.2
Reescribe la expresión.
Paso 3.4.2.1.2
Simplifica.
Paso 3.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.4.3.1
Simplifica .
Toca para ver más pasos...
Paso 3.4.3.1.1
Usa el teorema del binomio.
Paso 3.4.3.1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.4.3.1.2.1
Aplica la regla del producto a .
Paso 3.4.3.1.2.2
Eleva a la potencia de .
Paso 3.4.3.1.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.3.1.2.3.1
Mueve el signo menos inicial en al numerador.
Paso 3.4.3.1.2.3.2
Factoriza de .
Paso 3.4.3.1.2.3.3
Cancela el factor común.
Paso 3.4.3.1.2.3.4
Reescribe la expresión.
Paso 3.4.3.1.2.4
Aplica la regla del producto a .
Paso 3.4.3.1.2.5
Eleva a la potencia de .
Paso 3.4.3.1.2.6
Combina y .
Paso 3.4.3.1.2.7
Mueve a la izquierda de .
Paso 3.4.3.1.2.8
Mueve el negativo al frente de la fracción.
Paso 3.4.3.1.2.9
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.3.1.2.9.1
Cancela el factor común.
Paso 3.4.3.1.2.9.2
Reescribe la expresión.
Paso 3.4.3.1.2.10
Usa la regla de la potencia para distribuir el exponente.
Toca para ver más pasos...
Paso 3.4.3.1.2.10.1
Aplica la regla del producto a .
Paso 3.4.3.1.2.10.2
Aplica la regla del producto a .
Paso 3.4.3.1.2.11
Eleva a la potencia de .
Paso 3.4.3.1.2.12
Multiplica por .
Paso 3.4.3.1.2.13
Eleva a la potencia de .
Paso 3.4.3.1.2.14
Eleva a la potencia de .
Paso 3.4.3.1.2.15
Combina y .
Paso 3.4.3.1.2.16
Mueve a la izquierda de .
Paso 3.4.3.1.2.17
Usa la regla de la potencia para distribuir el exponente.
Toca para ver más pasos...
Paso 3.4.3.1.2.17.1
Aplica la regla del producto a .
Paso 3.4.3.1.2.17.2
Aplica la regla del producto a .
Paso 3.4.3.1.2.18
Eleva a la potencia de .
Paso 3.4.3.1.2.19
Eleva a la potencia de .
Paso 3.4.3.1.2.20
Eleva a la potencia de .
Paso 4
Reemplaza con para ver la respuesta final.
Paso 5
Verifica si es la inversa de .
Toca para ver más pasos...
Paso 5.1
Para verificar la inversa, comprueba si y .
Paso 5.2
Evalúa .
Toca para ver más pasos...
Paso 5.2.1
Establece la función de resultado compuesta.
Paso 5.2.2
Evalúa mediante la sustitución del valor de en .
Paso 5.2.3
Simplifica los términos.
Toca para ver más pasos...
Paso 5.2.3.1
Combina los numeradores sobre el denominador común.
Paso 5.2.3.2
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.2.1.1
Aplica la propiedad distributiva.
Paso 5.2.3.2.1.2
Multiplica por .
Paso 5.2.3.2.2
Suma y .
Paso 5.2.3.2.3
Reescribe como .
Paso 5.2.3.2.4
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 5.2.3.2.4.1
Aplica la propiedad distributiva.
Paso 5.2.3.2.4.2
Aplica la propiedad distributiva.
Paso 5.2.3.2.4.3
Aplica la propiedad distributiva.
Paso 5.2.3.2.5
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 5.2.3.2.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.2.5.1.1
Multiplica .
Toca para ver más pasos...
Paso 5.2.3.2.5.1.1.1
Multiplica por .
Paso 5.2.3.2.5.1.1.2
Eleva a la potencia de .
Paso 5.2.3.2.5.1.1.3
Eleva a la potencia de .
Paso 5.2.3.2.5.1.1.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.3.2.5.1.1.5
Suma y .
Paso 5.2.3.2.5.1.2
Reescribe como .
Paso 5.2.3.2.5.1.3
Multiplica por .
Paso 5.2.3.2.5.1.4
Multiplica por .
Paso 5.2.3.2.5.1.5
Multiplica por .
Paso 5.2.3.2.5.2
Suma y .
Paso 5.2.3.2.6
Aplica la propiedad distributiva.
Paso 5.2.3.2.7
Simplifica.
Toca para ver más pasos...
Paso 5.2.3.2.7.1
Multiplica por .
Paso 5.2.3.2.7.2
Multiplica por .
Paso 5.2.3.2.7.3
Multiplica por .
Paso 5.2.3.2.8
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.2.8.1
Aplica la propiedad distributiva.
Paso 5.2.3.2.8.2
Multiplica por .
Paso 5.2.3.2.9
Suma y .
Paso 5.2.3.2.10
Aplica la propiedad distributiva.
Paso 5.2.3.2.11
Multiplica por .
Paso 5.2.3.2.12
Multiplica por .
Paso 5.2.3.3
Simplifica mediante la adición de términos.
Toca para ver más pasos...
Paso 5.2.3.3.1
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.2.3.3.1.1
Suma y .
Paso 5.2.3.3.1.2
Suma y .
Paso 5.2.3.3.2
Suma y .
Paso 5.2.3.4
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.3.4.1.1
Aplica la propiedad distributiva.
Paso 5.2.3.4.1.2
Multiplica por .
Paso 5.2.3.4.1.3
Suma y .
Paso 5.2.3.4.2
Mueve el negativo al frente de la fracción.
Paso 5.2.3.4.3
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.2.3.4.3.1
Factoriza de .
Paso 5.2.3.4.3.2
Factoriza de .
Paso 5.2.3.4.3.3
Factoriza de .
Paso 5.2.3.4.3.4
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.2.3.4.3.4.1
Factoriza de .
Paso 5.2.3.4.3.4.2
Cancela el factor común.
Paso 5.2.3.4.3.4.3
Reescribe la expresión.
Paso 5.2.3.4.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.3.4.4.1
Factoriza de .
Toca para ver más pasos...
Paso 5.2.3.4.4.1.1
Factoriza de .
Paso 5.2.3.4.4.1.2
Factoriza de .
Paso 5.2.3.4.4.1.3
Factoriza de .
Paso 5.2.3.4.4.2
Usa para reescribir como .
Paso 5.2.3.4.4.3
Usa para reescribir como .
Paso 5.2.3.4.4.4
Factoriza de .
Toca para ver más pasos...
Paso 5.2.3.4.4.4.1
Factoriza de .
Paso 5.2.3.4.4.4.2
Factoriza de .
Paso 5.2.3.4.4.4.3
Factoriza de .
Paso 5.2.3.4.5
Mueve el negativo al frente de la fracción.
Paso 5.2.3.5
Combina los numeradores sobre el denominador común.
Paso 5.2.3.6
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.3.6.1.1
Reescribe como .
Paso 5.2.3.6.1.2
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la diferencia de cubos, , donde y .
Paso 5.2.3.6.1.3
Simplifica.
Toca para ver más pasos...
Paso 5.2.3.6.1.3.1
Resta de .
Paso 5.2.3.6.1.3.2
Suma y .
Paso 5.2.3.6.1.3.3
Usa para reescribir como .
Paso 5.2.3.6.1.3.4
Usa para reescribir como .
Paso 5.2.3.6.1.3.5
Reescribe como .
Paso 5.2.3.6.1.3.6
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 5.2.3.6.1.3.6.1
Aplica la propiedad distributiva.
Paso 5.2.3.6.1.3.6.2
Aplica la propiedad distributiva.
Paso 5.2.3.6.1.3.6.3
Aplica la propiedad distributiva.
Paso 5.2.3.6.1.3.7
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 5.2.3.6.1.3.7.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.6.1.3.7.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.3.6.1.3.7.1.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.2.3.6.1.3.7.1.2.1
Mueve .
Paso 5.2.3.6.1.3.7.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.3.6.1.3.7.1.2.3
Combina los numeradores sobre el denominador común.
Paso 5.2.3.6.1.3.7.1.2.4
Suma y .
Paso 5.2.3.6.1.3.7.1.3
Multiplica por .
Paso 5.2.3.6.1.3.7.1.4
Multiplica por .
Paso 5.2.3.6.1.3.7.1.5
Multiplica por .
Paso 5.2.3.6.1.3.7.1.6
Multiplica por .
Paso 5.2.3.6.1.3.7.2
Suma y .
Paso 5.2.3.6.1.3.8
Aplica la propiedad distributiva.
Paso 5.2.3.6.1.3.9
Multiplica por .
Paso 5.2.3.6.1.3.10
Multiplica por .
Paso 5.2.3.6.1.3.11
Eleva a la potencia de .
Paso 5.2.3.6.1.3.12
Suma y .
Paso 5.2.3.6.1.3.13
Suma y .
Paso 5.2.3.6.1.3.14
Suma y .
Paso 5.2.3.6.1.3.15
Reordena los términos.
Paso 5.2.3.6.1.3.16
Factoriza de .
Toca para ver más pasos...
Paso 5.2.3.6.1.3.16.1
Factoriza de .
Paso 5.2.3.6.1.3.16.2
Factoriza de .
Paso 5.2.3.6.1.3.16.3
Factoriza de .
Paso 5.2.3.6.1.3.16.4
Factoriza de .
Paso 5.2.3.6.1.3.16.5
Factoriza de .
Paso 5.2.3.6.1.3.17
Multiplica por .
Paso 5.2.3.6.2
Factoriza de .
Paso 5.2.3.6.3
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.2.3.6.3.1
Factoriza de .
Paso 5.2.3.6.3.2
Cancela el factor común.
Paso 5.2.3.6.3.3
Reescribe la expresión.
Paso 5.2.3.7
Combina los numeradores sobre el denominador común.
Paso 5.2.3.8
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.8.1
Aplica la propiedad distributiva.
Paso 5.2.3.8.2
Simplifica.
Toca para ver más pasos...
Paso 5.2.3.8.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.3.8.2.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.3.8.2.3
Mueve a la izquierda de .
Paso 5.2.3.8.3
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.8.3.1
Multiplica .
Toca para ver más pasos...
Paso 5.2.3.8.3.1.1
Usa para reescribir como .
Paso 5.2.3.8.3.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.3.8.3.1.3
Combina los numeradores sobre el denominador común.
Paso 5.2.3.8.3.1.4
Suma y .
Paso 5.2.3.8.3.2
Multiplica .
Toca para ver más pasos...
Paso 5.2.3.8.3.2.1
Usa para reescribir como .
Paso 5.2.3.8.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.3.8.3.2.3
Combina los numeradores sobre el denominador común.
Paso 5.2.3.8.3.2.4
Suma y .
Paso 5.2.3.8.3.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.3.8.3.2.5.1
Cancela el factor común.
Paso 5.2.3.8.3.2.5.2
Reescribe la expresión.
Paso 5.2.3.8.4
Aplica la propiedad distributiva.
Paso 5.2.3.8.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.3.8.6
Multiplica por .
Paso 5.2.3.8.7
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.3.8.7.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.2.3.8.7.1.1
Mueve .
Paso 5.2.3.8.7.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.3.8.7.1.3
Combina los numeradores sobre el denominador común.
Paso 5.2.3.8.7.1.4
Suma y .
Paso 5.2.3.8.7.2
Multiplica por .
Paso 5.2.3.9
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.2.3.9.1
Resta de .
Paso 5.2.3.9.2
Suma y .
Paso 5.2.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.4.1
Usa para reescribir como .
Paso 5.2.4.2
Resta de .
Paso 5.2.4.3
Suma y .
Paso 5.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.5.1
Cancela el factor común.
Paso 5.2.5.2
Divide por .
Paso 5.3
Evalúa .
Toca para ver más pasos...
Paso 5.3.1
Establece la función de resultado compuesta.
Paso 5.3.2
Evalúa mediante la sustitución del valor de en .
Paso 5.3.3
Elimina los paréntesis.
Paso 5.3.4
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.4.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.3.4.1.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 5.3.4.1.2.1
Multiplica por .
Paso 5.3.4.1.2.2
Multiplica por .
Paso 5.3.4.1.3
Combina los numeradores sobre el denominador común.
Paso 5.3.4.1.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.3.4.1.4.1
Factoriza de .
Toca para ver más pasos...
Paso 5.3.4.1.4.1.1
Factoriza de .
Paso 5.3.4.1.4.1.2
Factoriza de .
Paso 5.3.4.1.4.1.3
Factoriza de .
Paso 5.3.4.1.4.2
Multiplica por .
Paso 5.3.4.1.5
Obtén el denominador común
Toca para ver más pasos...
Paso 5.3.4.1.5.1
Multiplica por .
Paso 5.3.4.1.5.2
Multiplica por .
Paso 5.3.4.1.5.3
Reordena los factores de .
Paso 5.3.4.1.5.4
Multiplica por .
Paso 5.3.4.1.6
Combina los numeradores sobre el denominador común.
Paso 5.3.4.1.7
Multiplica por .
Paso 5.3.4.1.8
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.3.4.1.8.1
Aplica la propiedad distributiva.
Paso 5.3.4.1.8.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.3.4.1.8.2.1
Multiplica por .
Toca para ver más pasos...
Paso 5.3.4.1.8.2.1.1
Eleva a la potencia de .
Paso 5.3.4.1.8.2.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.3.4.1.8.2.2
Suma y .
Paso 5.3.4.1.8.3
Mueve a la izquierda de .
Paso 5.3.4.1.8.4
Reescribe en forma factorizada.
Toca para ver más pasos...
Paso 5.3.4.1.8.4.1
Factoriza mediante la prueba de raíces racionales.
Toca para ver más pasos...
Paso 5.3.4.1.8.4.1.1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 5.3.4.1.8.4.1.2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 5.3.4.1.8.4.1.3
Sustituye y simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Toca para ver más pasos...
Paso 5.3.4.1.8.4.1.3.1
Sustituye en el polinomio.
Paso 5.3.4.1.8.4.1.3.2
Eleva a la potencia de .
Paso 5.3.4.1.8.4.1.3.3
Eleva a la potencia de .
Paso 5.3.4.1.8.4.1.3.4
Multiplica por .
Paso 5.3.4.1.8.4.1.3.5
Resta de .
Paso 5.3.4.1.8.4.1.3.6
Multiplica por .
Paso 5.3.4.1.8.4.1.3.7
Suma y .
Paso 5.3.4.1.8.4.1.3.8
Resta de .
Paso 5.3.4.1.8.4.1.4
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 5.3.4.1.8.4.1.5
Divide por .
Toca para ver más pasos...
Paso 5.3.4.1.8.4.1.5.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
--+-
Paso 5.3.4.1.8.4.1.5.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
--+-
Paso 5.3.4.1.8.4.1.5.3
Multiplica el nuevo término del cociente por el divisor.
--+-
+-
Paso 5.3.4.1.8.4.1.5.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
--+-
-+
Paso 5.3.4.1.8.4.1.5.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
--+-
-+
-
Paso 5.3.4.1.8.4.1.5.6
Retira los próximos términos del dividendo original hacia el dividendo actual.
--+-
-+
-+
Paso 5.3.4.1.8.4.1.5.7
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
-
--+-
-+
-+
Paso 5.3.4.1.8.4.1.5.8
Multiplica el nuevo término del cociente por el divisor.
-
--+-
-+
-+
-+
Paso 5.3.4.1.8.4.1.5.9
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
-
--+-
-+
-+
+-
Paso 5.3.4.1.8.4.1.5.10
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
-
--+-
-+
-+
+-
+
Paso 5.3.4.1.8.4.1.5.11
Retira los próximos términos del dividendo original hacia el dividendo actual.
-
--+-
-+
-+
+-
+-
Paso 5.3.4.1.8.4.1.5.12
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
-+
--+-
-+
-+
+-
+-
Paso 5.3.4.1.8.4.1.5.13
Multiplica el nuevo término del cociente por el divisor.
-+
--+-
-+
-+
+-
+-
+-
Paso 5.3.4.1.8.4.1.5.14
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
-+
--+-
-+
-+
+-
+-
-+
Paso 5.3.4.1.8.4.1.5.15
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
-+
--+-
-+
-+
+-
+-
-+
Paso 5.3.4.1.8.4.1.5.16
Como el resto es , la respuesta final es el cociente.
Paso 5.3.4.1.8.4.1.6
Escribe como un conjunto de factores.
Paso 5.3.4.1.8.4.2
Factoriza con la regla del cuadrado perfecto.
Toca para ver más pasos...
Paso 5.3.4.1.8.4.2.1
Reescribe como .
Paso 5.3.4.1.8.4.2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 5.3.4.1.8.4.2.3
Reescribe el polinomio.
Paso 5.3.4.1.8.4.2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 5.3.4.1.8.4.3
Combina factores semejantes.
Toca para ver más pasos...
Paso 5.3.4.1.8.4.3.1
Eleva a la potencia de .
Paso 5.3.4.1.8.4.3.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.3.4.1.8.4.3.3
Suma y .
Paso 5.3.4.1.9
Reescribe como .
Paso 5.3.4.1.10
Reescribe como .
Paso 5.3.4.1.11
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales.
Paso 5.3.4.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.3.4.3
Combina y .
Paso 5.3.4.4
Combina los numeradores sobre el denominador común.
Paso 5.3.4.5
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.3.4.5.1
Multiplica por .
Paso 5.3.4.5.2
Resta de .
Paso 5.3.4.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.4.6.1
Cancela el factor común.
Paso 5.3.4.6.2
Reescribe la expresión.
Paso 5.3.5
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.3.5.1
Suma y .
Paso 5.3.5.2
Suma y .
Paso 5.4
Como y , entonces es la inversa de .