Álgebra Ejemplos

حل من أجل θ sin(theta)^2=cos(theta)^2+1
Paso 1
Mueve todas las expresiones al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Resta de ambos lados de la ecuación.
Paso 2
Simplifica .
Toca para ver más pasos...
Paso 2.1
Mueve .
Paso 2.2
Reordena y .
Paso 2.3
Reescribe como .
Paso 2.4
Factoriza de .
Paso 2.5
Factoriza de .
Paso 2.6
Reescribe como .
Paso 2.7
Aplica la identidad pitagórica.
Paso 2.8
Resta de .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.1.1
Divide cada término en por .
Paso 3.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.1.2.1.1
Cancela el factor común.
Paso 3.1.2.1.2
Divide por .
Paso 3.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.1.3.1
Divide por .
Paso 3.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.3
Simplifica .
Toca para ver más pasos...
Paso 3.3.1
Reescribe como .
Paso 3.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.3.3
Más o menos es .
Paso 3.4
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 3.5
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.5.1
El valor exacto de es .
Paso 3.6
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 3.7
Simplifica .
Toca para ver más pasos...
Paso 3.7.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.7.2
Combina fracciones.
Toca para ver más pasos...
Paso 3.7.2.1
Combina y .
Paso 3.7.2.2
Combina los numeradores sobre el denominador común.
Paso 3.7.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.7.3.1
Multiplica por .
Paso 3.7.3.2
Resta de .
Paso 3.8
Obtén el período de .
Toca para ver más pasos...
Paso 3.8.1
El período de la función puede calcularse mediante .
Paso 3.8.2
Reemplaza con en la fórmula para el período.
Paso 3.8.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.8.4
Divide por .
Paso 3.9
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 4
Consolida las respuestas.
, para cualquier número entero