Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2
Como contiene tanto números como variables, hay cuatro pasos para obtener el MCM. Obtén el MCM para las partes numérica, variable y variable compuesta. Luego, multiplícalos.
Los pasos para obtener el MCM para son los siguientes:
1. Busca el MCM para la parte numérica .
2. Busca el MCM para la parte variable .
3. Busca el MCM para la parte de variable compuesta .
4. Multiplica cada MCM junto.
Paso 1.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 1.4
Como no tiene factores además de y .
es un número primo
Paso 1.5
tiene factores de y .
Paso 1.6
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 1.7
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 1.8
Multiplica por .
Paso 1.9
El factor para es en sí mismo.
ocurre vez.
Paso 1.10
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 1.11
El factor para es en sí mismo.
ocurre vez.
Paso 1.12
El MCM de es el resultado de la multiplicación de todos los factores la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 1.13
El mínimo común múltiplo de algunos números es el número más pequeño del que los números son factores.
Paso 2
Paso 2.1
Multiplica cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Simplifica cada término.
Paso 2.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 2.2.1.2
Cancela el factor común de .
Paso 2.2.1.2.1
Factoriza de .
Paso 2.2.1.2.2
Factoriza de .
Paso 2.2.1.2.3
Cancela el factor común.
Paso 2.2.1.2.4
Reescribe la expresión.
Paso 2.2.1.3
Combina y .
Paso 2.2.1.4
Multiplica por .
Paso 2.2.1.5
Cancela el factor común de .
Paso 2.2.1.5.1
Cancela el factor común.
Paso 2.2.1.5.2
Reescribe la expresión.
Paso 2.2.1.6
Aplica la propiedad distributiva.
Paso 2.2.1.7
Multiplica por .
Paso 2.2.1.8
Cancela el factor común de .
Paso 2.2.1.8.1
Mueve el signo menos inicial en al numerador.
Paso 2.2.1.8.2
Cancela el factor común.
Paso 2.2.1.8.3
Reescribe la expresión.
Paso 2.2.1.9
Aplica la propiedad distributiva.
Paso 2.2.1.10
Multiplica por .
Paso 2.2.2
Simplifica mediante la adición de términos.
Paso 2.2.2.1
Resta de .
Paso 2.2.2.2
Resta de .
Paso 2.3
Simplifica el lado derecho.
Paso 2.3.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 2.3.2
Combina y .
Paso 2.3.3
Cancela el factor común de .
Paso 2.3.3.1
Factoriza de .
Paso 2.3.3.2
Cancela el factor común.
Paso 2.3.3.3
Reescribe la expresión.
Paso 3
Paso 3.1
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Paso 3.1.1
Resta de ambos lados de la ecuación.
Paso 3.1.2
Resta de .
Paso 3.2
Suma a ambos lados de la ecuación.
Paso 3.3
Divide cada término en por y simplifica.
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Mueve el negativo al frente de la fracción.
Paso 4
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: