Álgebra Ejemplos

Hallar la directriz. x^2-2x+y-1=0
Paso 1
Reescribe la ecuación en forma de vértice.
Toca para ver más pasos...
Paso 1.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.2
Suma a ambos lados de la ecuación.
Paso 1.1.3
Suma a ambos lados de la ecuación.
Paso 1.2
Completa el cuadrado de .
Toca para ver más pasos...
Paso 1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.2.2
Considera la forma de vértice de una parábola.
Paso 1.2.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.3.2.1.1
Cancela el factor común.
Paso 1.2.3.2.1.2
Reescribe la expresión.
Paso 1.2.3.2.1.3
Mueve el negativo del denominador de .
Paso 1.2.3.2.2
Multiplica por .
Paso 1.2.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.4.2.1.1
Eleva a la potencia de .
Paso 1.2.4.2.1.2
Multiplica por .
Paso 1.2.4.2.1.3
Divide por .
Paso 1.2.4.2.1.4
Multiplica por .
Paso 1.2.4.2.2
Suma y .
Paso 1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.3
Establece igual al nuevo lado derecho.
Paso 2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 3
Obtén el vértice .
Paso 4
Obtén , la distancia desde el vértice hasta el foco.
Toca para ver más pasos...
Paso 4.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 4.2
Sustituye el valor de en la fórmula.
Paso 4.3
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.3.1
Reescribe como .
Paso 4.3.2
Mueve el negativo al frente de la fracción.
Paso 5
Obtén la directriz.
Toca para ver más pasos...
Paso 5.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 5.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 6