Álgebra Ejemplos

Resolver usando la fórmula cuadrática 3/(x-1)-(2x+10)/(x^2+2x-3)=1/3
Paso 1
Mueve todos los términos al lado izquierdo de la ecuación y simplifica.
Toca para ver más pasos...
Paso 1.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.1.1
Factoriza de .
Toca para ver más pasos...
Paso 1.1.1.1.1
Factoriza de .
Paso 1.1.1.1.2
Factoriza de .
Paso 1.1.1.1.3
Factoriza de .
Paso 1.1.1.2
Factoriza con el método AC.
Toca para ver más pasos...
Paso 1.1.1.2.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.1.1.2.2
Escribe la forma factorizada mediante estos números enteros.
Paso 1.2
Resta de ambos lados de la ecuación.
Paso 2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.3
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.4
Como no tiene factores además de y .
es un número primo
Paso 2.5
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.6
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 2.7
El factor para es en sí mismo.
ocurre vez.
Paso 2.8
El factor para es en sí mismo.
ocurre vez.
Paso 2.9
El MCM de es el resultado de la multiplicación de todos los factores la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.10
El mínimo común múltiplo de algunos números es el número más pequeño del que los números son factores.
Paso 3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.2.1.2.1
Combina y .
Paso 3.2.1.2.2
Multiplica por .
Paso 3.2.1.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.3.1
Cancela el factor común.
Paso 3.2.1.3.2
Reescribe la expresión.
Paso 3.2.1.4
Aplica la propiedad distributiva.
Paso 3.2.1.5
Multiplica por .
Paso 3.2.1.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.6.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.6.2
Factoriza de .
Paso 3.2.1.6.3
Cancela el factor común.
Paso 3.2.1.6.4
Reescribe la expresión.
Paso 3.2.1.7
Multiplica por .
Paso 3.2.1.8
Aplica la propiedad distributiva.
Paso 3.2.1.9
Multiplica por .
Paso 3.2.1.10
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.10.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.10.2
Factoriza de .
Paso 3.2.1.10.3
Cancela el factor común.
Paso 3.2.1.10.4
Reescribe la expresión.
Paso 3.2.1.11
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 3.2.1.11.1
Aplica la propiedad distributiva.
Paso 3.2.1.11.2
Aplica la propiedad distributiva.
Paso 3.2.1.11.3
Aplica la propiedad distributiva.
Paso 3.2.1.12
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 3.2.1.12.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.12.1.1
Multiplica por .
Paso 3.2.1.12.1.2
Mueve a la izquierda de .
Paso 3.2.1.12.1.3
Reescribe como .
Paso 3.2.1.12.1.4
Multiplica por .
Paso 3.2.1.12.2
Resta de .
Paso 3.2.1.13
Aplica la propiedad distributiva.
Paso 3.2.1.14
Simplifica.
Toca para ver más pasos...
Paso 3.2.1.14.1
Multiplica por .
Paso 3.2.1.14.2
Multiplica por .
Paso 3.2.2
Simplifica mediante la adición de términos.
Toca para ver más pasos...
Paso 3.2.2.1
Resta de .
Paso 3.2.2.2
Resta de .
Paso 3.2.2.3
Resta de .
Paso 3.2.2.4
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 3.2.2.4.1
Suma y .
Paso 3.2.2.4.2
Suma y .
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 3.3.1.1
Aplica la propiedad distributiva.
Paso 3.3.1.2
Multiplica por .
Paso 3.3.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 3.3.2.1
Aplica la propiedad distributiva.
Paso 3.3.2.2
Aplica la propiedad distributiva.
Paso 3.3.2.3
Aplica la propiedad distributiva.
Paso 3.3.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 3.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.3.3.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.3.3.1.1.1
Mueve .
Paso 3.3.3.1.1.2
Multiplica por .
Paso 3.3.3.1.2
Multiplica por .
Paso 3.3.3.1.3
Multiplica por .
Paso 3.3.3.2
Resta de .
Paso 3.3.4
Multiplica por .
Paso 4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 4.1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 4.1.1
Sea . Sustituye por todos los casos de .
Paso 4.1.2
Factoriza de .
Toca para ver más pasos...
Paso 4.1.2.1
Eleva a la potencia de .
Paso 4.1.2.2
Factoriza de .
Paso 4.1.2.3
Factoriza de .
Paso 4.1.2.4
Factoriza de .
Paso 4.1.3
Reemplaza todos los casos de con .
Paso 4.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4.3
Establece igual a .
Paso 4.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.4.1
Establece igual a .
Paso 4.4.2
Resuelve en .
Toca para ver más pasos...
Paso 4.4.2.1
Resta de ambos lados de la ecuación.
Paso 4.4.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.4.2.2.1
Divide cada término en por .
Paso 4.4.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.4.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 4.4.2.2.2.2
Divide por .
Paso 4.4.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.4.2.2.3.1
Divide por .
Paso 4.5
La solución final comprende todos los valores que hacen verdadera.
Paso 5
Excluye las soluciones que no hagan que sea verdadera.