Ingresa un problema...
Álgebra Ejemplos
Paso 1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2
Paso 2.1
Establece igual a .
Paso 2.2
Resuelve en .
Paso 2.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.2.2
Simplifica .
Paso 2.2.2.1
Reescribe como .
Paso 2.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.2.2.3
Más o menos es .
Paso 2.2.3
El rango de la secante es y . Como no cae en este rango, no hay solución.
No hay solución
No hay solución
No hay solución
Paso 3
Paso 3.1
Establece igual a .
Paso 3.2
Resuelve en .
Paso 3.2.1
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
El valor exacto de es .
Paso 3.2.3
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 3.2.4
Suma y .
Paso 3.2.5
Obtén el período de .
Paso 3.2.5.1
El período de la función puede calcularse mediante .
Paso 3.2.5.2
Reemplaza con en la fórmula para el período.
Paso 3.2.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.2.5.4
Divide por .
Paso 3.2.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Paso 4
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Paso 5
Consolida las respuestas.
, para cualquier número entero